
ACM Communications in Computer Algebra, TBA TBA

Complexity Bounds for the Generalization of Fulton’s
Intersection Multiplicity Algorithm

Ryan Sandford*

Independent Researcher
rsandfo@uwo.ca

Abstract. We analyze the Generalization of Fulton’s Intersection Multiplicity Algorithm, a symbolic

partial algorithm for computing intersection multiplicities via recursive algebraic rewriting. While pre-

liminary benchmarks suggest it may perform well on certain inputs, we show the algorithm exhibits non-

elementary worst-case complexity on dense systems and exponential complexity in favorable cases. These

results indicate the algorithm’s practical utility is confined to systems that are either sparse or of modest

size. To address this, we propose an optimization that reduces the depth of recursion across branches of

computation, limiting the growth responsible for non-elementary complexity.

1 Introduction

The Generalization of Fulton’s Intersection Multiplicity Algorithm (GFIMA) [1, 2, 5] is a symbolic
partial algorithm which computes intersection multiplicities by recursively applying algebraic rewrite
rules to systems of polynomial equations. GFIMA, along with its extension based on regular chains
[3], are implemented in the Regular Chains Library [4] distributed with Maple.

Despite promising preliminary benchmarks [3, 5] against comparable tangent cone and Gröbner
basis-based algorithms [7, 8, 6], we show GFIMA exhibits non-elementary worst-case complexity
on dense systems, and exponential complexity in favorable cases. These findings suggest that its
practical utility is confined to systems that are either sparse or of modest size. We conclude by
presenting an optimization that reduces the number of calls to the algorithm’s most expensive
operation, collapsing the nested compositions which dominate its runtime in general cases.

2 The Generalization of Fulton’s Algorithm

2.1 Preliminaries

Let K be a field and let An denote the affine space of dimension n over K. We define the degree
of the zero polynomial to be −∞ with respect to any variable. When p ∈ An is fixed, we write
f (i) := f(x1, . . . , xi, pi+1, . . . , pn) to denote the partial evaluation of f at p in the last n− i variables,
and p(i) := (p1, . . . , pi) to denote truncation to the first i coordinates. For our analysis, we assume
that specializations corresponding to projections f (i) are computed iteratively in reverse variable
order, with intermediate results cached and retained unless f is structurally modified. Let Φ[k]

denote the k-fold composition of the function Φ, where Φ[1] = Φ. The valuation of f at xi − pi is
defined as the largest m such that f ≡ 0 mod (xi − pi)

m.

*This work was conducted independently and does not relate to the author’s employment at Amazon.

1

Title of your paper TBA

Definition 1 (Intersection Multiplicity) The intersection multiplicity of f1, . . . , fn ∈
K[x1, . . . , xn] at p ∈ An, written IM(p; f1, . . . , fn) is defined as the dimension of OAn,p /⟨f1, . . . , fn⟩
as a K vector space, where OAn,p is the localization of the polynomial ring at p.

Definition 2 (Elimination Degree) Take f ∈ K[x1, . . . , xn] and fix p ∈ An. We define the elim-
ination degree of f at i, or equivalently in xi, to be the degree of f (i) in xi, denoted by elimdeg(f, i).

2.2 Complexity Analysis

Algorithm 1 provides a partial algorithm for computing intersection multiplicities by leveraging the
generalization of Fulton’s properties [1, 2] to rewrite the input system and recursively subdivide
the problem. The algorithm has two core components, the Rewrite Loop and the Recursive Split.
The Rewrite Loop iterates through every variable, chooses a pivot element with minimal elimination
degree in the current variable (say xj), and uses this pivot element to reduce the elimination degree
of up to n − j polynomials. The process of choosing a pivot and reducing the elimination degree
of up to n− j polynomials continues until there are n− j polynomials whose elimination degree in
xj is negative. The correctness of this process is ensured by Fulton’s rewrite rules, however, when
Fulton’s rewrite rules cannot be applied, the algorithm terminates and indicates a failure. If the
Rewrite Loop is successful, the input system has been rewritten so that it is triangular in the sense
that every polynomial fi corresponds to a unique variable xn−i+1, where the elimination degree of
fi is positive in xn−i+1 and negative for all variables greater than xn−i+1. That is, for some fixed

solution p and for each index i, xn−i+1 divides f
(n−i+1)
i with a nonzero quotient. This structure is

exploited by the Recursive Split step, which reduces the task to computing an equivalent sum of
strictly smaller intersection multiplicities.

2.2.1 Analyzing Expression Swell from the Rewrite Loop

Suppose f1, . . . , fn are dense with maximum degree d0 and n > 2. Observe that for each iteration of
the Rewrite Loop (which corresponds to reducing the elimination degree with respect to some xj),
each polynomial can be rewritten at most d0 times since each rewrite eliminates at least one term
with a positive elimination degree in xj.

Every rewrite performed can increase the maximum degree of the input system. The worst case
occurs when every polynomial has d0 terms with a positive elimination degree in xj, and when each
rewrite eliminates only one term with positive elimination degree in each rewritten polynomial. In
this case, a pivot polynomial will be used to reduce the elimination degree of up to n−j polynomials,
and one of those rewritten polynomials must then in turn be used to reduce the elimination degree
of the pivot polynomial, resulting in a polynomial with degree at most 3d + 1 where d was the
maximum degree before the rewrite cycle. This cycle repeats d0−1 times before executing one final
rewrite step and proceeding to the next iteration.

Let dj be the maximum degree at the end of the j-th iteration of the Rewrite Loop. When

j = 1, the leading coefficient of f
(j)
i is in K, hence the degree can increase by at most d0 − 1, thus

d1 ≤ 2d0 − 1. When j > 1, the leading coefficient of f
(j)
i is a polynomial in j − 1 variables with a

degree which is bounded by the degree of the system. Define g : d 7→ 3d + 1. After d0 − 1 rewrite
cycles during the j-th iteration of the Rewrite Loop for j > 1, the maximum degree will be at most
g[d0−1](dj−1) = 3d0−1dj−1 +

3d0−1−1
2

. Following one final rewrite, the maximum degree at the end of
the j-th iteration is bounded by dj ≤ 3d0−1(2dj−1 + 1) − 1. Define h : d 7→ 3d0−1(2d + 1) − 1, a
function which models the maximum degree growth after a full iteration of the rewrite loop when

2

Author’s Name

Algorithm 1: The Generalization of Fulton’s Intersection Multiplicity Algorithm
Function gfima(p; f1, . . . , fn)

Input: x1 ≻ . . . ≻ xn; p = (p1, . . . , pn) ∈ An; f1, . . . , fn ∈ K[x1, . . . , xn] where V(f1, . . . , fn) is zero-dimensional at p.
Output: IM(p; f1, . . . , fn) or Fail
if fi(p) ̸= 0 for any i = 1, . . . , n then

return 0

if n = 1 then
return max{m > 0 | fn ≡ 0 mod (x1 − p1)m}

for j = 1, . . . , n− 1 do /* Rewrite Loop */

while true do
for i = 1, . . . , n− j + 1 do

ri ← elimdeg(fi, j)

Sort f1, . . . , fn−j+1 so that r1 ≤ . . . ≤ rn−j+1

if rn−j < 0 then
break

m← min(k | rk > 0)
for i = m+ 1, . . . , n− j + 1 do

Lm ← lc(f
(j)
m ;xj)

Li ← lc(f
(j)
i ;xj)

L← lcm(Li, Lm)
if L

Li
(p) = 0 then
return FAIL

fi ← L
Li

fi − (xj − pj)
ri−rm L

Lm
fm

for i = 1, . . . , n do /* Recursive Split */

qi ← quo
(
f
(n−i+1)
i , xn−i+1 − pn−i+1; xn−i+1

)
return

n∑
k=1

gfima
(
p(k); q

(k)
n−k+1, f

(k)
n−k+2, . . . , f

(k)
n

)

j > 1. Since the loop terminates in n − 1 iterations, of which only n − 2 can increase the degree,
the maximum degree after completing the Rewrite Loop, is bounded by

dn−1 ≤ h[n−2](d1) = 2n−33(n−2)(d0−1)(2d1 + 1)−
n−3∑
j=1

2j−13j(d0−1) − 1

≤ 2n−33(n−2)(d0−1)(4d0 − 1)−
n−3∑
j=1

2j−13j(d0−1) − 1.

2.2.2 Worst-Case Complexity of GFIMA

Let m be the intersection multiplicity of f1, . . . , fn at point p, and let d0 be the maximum degree
of any fi. Note that m can be no larger than the Bézout bound dn

0 . Since the sum of the heights
of each branch in the recursion tree with positive multiplicity is at most m and each Recursive Split
strictly decreases the remaining multiplicity [2], the worst case occurs when m − 1 recursive calls
which return positive multiplicity are made to GFIMA on systems of size n.

Let Di represent the maximum degree of any polynomial in the input system after i invocations
of the GFIMA procedure and suppose n > 2. Note that D0 = d0. Since the i-th invocation
of GFIMA executes the Rewrite Loop on a system with maximum degree Di−1 we have Di ≤
2n−33(n−2)(Di−1−1)(4Di−1 − 1) −

∑n−3
j=1 2

j−13j(Di−1−1) − 1 for i > 0. Hence, the total complexity of
GFIMA is asymptotically dominated by the cost of the polynomial operations performed during
the final invocation. The final step of the algorithm computes n specializations in n − 1 variables
on polynomials of degree at most Dm−1. After substituting the Bézout bound for m, Theorem 1
gives the final time complexity for GFIMA.

3

Title of your paper TBA

Theorem 1 If f1, . . . , fn ∈ K[x1, . . . , xn] with maximum degree d, n > 2, and p ∈ An, the worst-
case time complexity of Algorithm 1 is O

(
n2
(
Φ[dn](d)

)n)
where Φ : d 7→ 2n−33(n−2)(d−1)(4d − 1) −∑n−3

j=1 2
j−13j(d−1) − 1.

2.2.3 Best-Case Complexity of GFIMA

In the best case, the input system does not require rewriting, reducing the cost of GFIMA to the
cost of computing O(n) specializations in n−1 variables. This yields a time complexity of Ω(n2dn) if
only a single invocation is required, or Ω(n2d2n) if up to dn Recursive Split steps are still performed.

Theorem 2 Let f1, . . . , fn ∈ K[x1, . . . , xn] be polynomials of degree at most d, with n > 1 and
p ∈ An such that fi(p) = 0 for all i. Then the best-case time complexity of Algorithm 1 is Ω(n2dn).

3 Efficient Splitting Optimization

Because the overall cost exhibits non-elementary growth, any optimization that limits the number
of Recursive Split steps can significantly improve average-case performance. Theorem 3 achieves this
by refining the standard decomposition: rather than decreasing the remaining multiplicity by the
sum of sub-multiplicities, it decomposes the remaining multiplicity into a sum of sub-multiplicities
weighted by products of valuations. This more aggressive reduction decreases the depth of the
recursion tree, hence collapsing the nested compositions responsible for non-elementary growth.

Theorem 3 Suppose f1, . . . , fn ∈ K[x1, . . . , xn], p ∈ An. If for each i, elimdeg(fn−i+1, i) > 0 and

elimdeg(fj, i) < 0 for any j < n− i + 1, then (xi − pi)
vi divides f

(i)
n−i+1 where vi is its valuation at

xi − pi. If qn−i+1 is the corresponding quotient of each division, we have:

IM(p; f1, . . . , fn) =
n∑

i=1

((n∏
j=i+1

vj

)
· IM(p(i); q

(i)
n−i+1, f

(i)
n−i+2, . . . , f

(i)
n)

)
.

References

[1] W. Fulton, Algebraic Curves: An Introduction to Algebraic Geometry, Addison–Wesley, 1989.
[2] M. Moreno Maza and R. Sandford, “Towards Extending Fulton’s Algorithm for Computing

Intersection Multiplicities Beyond the Bivariate Case,” in CASC 2021, LNCS 12865, Springer,
2021, pp. 232–251. https://doi.org/10.1007/978-3-030-85165-1_14

[3] R. Sandford, J. Gerhard, and M. Moreno Maza, “Computing Intersection Multiplicities with
Regular Chains,” Maple Trans., vol. 2, no. 1, 2022. https://doi.org/10.5206/mt.v2i1.
14463

[4] F. Lemaire, M. Moreno Maza, and Y. Xie, “The RegularChains Library in Maple,” ACM
SIGSAM Bull., vol. 39, no. 3, pp. 96–97, 2005. https://doi.org/10.1145/1113439.1113456

[5] R. Sandford, Towards a Generalization of Fulton’s Intersection Multiplicity Algorithm, M.Sc.
thesis, Univ. Western Ontario, 2022. https://ir.lib.uwo.ca/etd/8506

[6] G.-M. Greuel, S. Laplagne, and G. Pfister, “Singular Manual: iMult,” 2022. https://www.
singular.uni-kl.de/Manual/4-0-3/sing_1277.htm

[7] P. Vrbik, Computing Intersection Multiplicity via Triangular Decomposition, Ph.D. thesis,
Univ. Western Ontario, 2014.

[8] S. Marcus, M. Moreno Maza, and P. Vrbik, “On Fulton’s Algorithm for Computing Intersection
Multiplicities,” in CASC 2012, LNCS 7442, Springer, 2012, pp. 198–211. https://doi.org/
10.1007/978-3-642-32973-9_17

4

