
Computing Intersection Multiplicities with Regular Chains

JÜRGEN GERHARD, Senior Director of Research, Maplesoft, Canada
MARC MORENO MAZA, Department of Computer Science, The University of Western Ontario, Canada
RYAN SANDFORD, Department of Computer Science, The University of Western Ontario, Canada

Abstract:We extend a generalization of Fulton’s intersectionmultiplicity algorithm to handle zero-dimensional
regular chains as input, allowing the generalization of Fulton’s algorithm to compute intersection multiplicities
at points containing non-rational coordinates. Moreover, we describe the implementation of this extension
in Maple, and show that the range of input systems for which intersection multiplicities can be computed
has increased substantially from existing standard basis free intersection multiplicity algorithm available in
Maple. Lastly, we show our implementation of the generalization of Fulton’s algorithm often outperforms the
existing standard basis free intersection multiplicity algorithm, typically by one to two orders of magnitude.

Recommended Reference Format:
Jürgen Gerhard, Marc Moreno Maza, and Ryan Sandford. 2021. Computing Intersection Multiplicities with
Regular Chains. 1, 1 (November 2021), 19 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
When an algebraic curve or surface has a singular point, local approximation at that point by a linear
space (namely a tangent space) is not possible. Consequently, other techniques must be used instead
such as computing tangent cones and intersection multiplicities. In 2014, the RegularChains library
introduced commands for such computations, based on algorithms proposed in [7, 1]. While those
algorithms enhance regular chain theory with a new application, namely the study of singularities
in algebraic geometry, much work remains to be done in order to perform those computations
in their full generality. For the case of intersection multiplicities, the support provided by the
sub-package AlgebraicGeometryTools of the RegularChains library is essentially limited to the
case of planar curves, following the ideas of William Fulton, from his textbook Algebraic Curves [5].
Those ideas replace the computation of standard bases (or Gröbner bases) by the manipulation of
regular sequences and regular chains. The intensive experimentation reported in [9] shows that this
is a very promising project. In [8], the authors provide a procedure which partially extends Fulton’s
intersection multiplicity algorithm to the general case. This procedure leads to a novel, standard
basis free approach for computing intersection multiplicities beyond the case of two planar curves,
which can cover cases the current standard basis free techniques cannot.
In this paper, we report on new developments (features and efficiency improvements) for the
sub-package AlgebraicGeometryTools based on the work reported in [8]. First, the algorithm
presented in [8], which computes the intersection multiplicity of an input polynomial system at a
point, is extended in Section 4 so as to compute the intersection multiplicity of an input polynomial
system at a finite set of points given by a regular chain. This extension is motivated by the fact

This work was supported by Mitacs through the Mitacs accelerate program.

Authors’ addresses: Jürgen Gerhard, Senior Director of Research, Maplesoft, 615 Kumpf Dr, Waterloo, Canada, jgerhard@
maplesoft.com; Marc Moreno Maza, Department of Computer Science, The University of Western Ontario, 1151 Richmond
St, London, Canada, moreno@csd.uwo.ca; Ryan Sandford, Department of Computer Science, The University of Western
Ontario, 1151 Richmond St, London, Canada, rsandfo@uwo.ca.

Permission to make digital or hard copies of all or part of this work for any use is granted without fee, provided that copies
bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored.
© 2021 Maple Transactions.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: November 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Jürgen Gerhard, Marc Moreno Maza, and Ryan Sandford

that, in practice, it is convenient to describe the solution set of a polynomial system by a set of
regular chains.
Second, the range of input systems for which intersection multiplicities (at an arbitrary point or
an arbitrary zero-dimensional regular chain) can be computed has increased substantially, see
Section 6. Indeed, in the 2014 version of AlgebraicGeometryTools, input systems in dimension
higher than two were handled by a reduction to the planar case requiring hypotheses that do not
hold generically. With the new version of AlgebraicGeometryTools, based on [8], this reduction
instead serves as an accessory to the adaptation of Fulton’s techniques to higher dimension. While
some corner cases still resist, many more input systems from the literature can now be processed.
Third, when both versions (the 2014 version and the latest one) both succeed in computing the
intersection multiplicity of an input polynomial system at some point, the latest version does it
faster, typically by one or two orders of magnitude, see Section 6.

2 Preliminaries
2.1 Notation and Basic Definitions
Let K be an algebraically closed field. Let A𝑛 denote A𝑛(K), the affine space of dimension 𝑛 over K.
We define the degree of the zero polynomial to be −∞ with respect to any variable. If 𝐼 is an ideal of
K[𝑥1, . . . , 𝑥𝑛], we denote by V (𝐼) the algebraic set (aka variety) consisting of the common zeros to
all polynomials in 𝐼 . An algebraic set V is irreducible, whenever V = V1 ∪V2 for some algebraic sets
V1,V2, implies V = V1 or V = V2. Let 𝑝 ∈ A𝑛 be a point. For polynomials 𝑓1, . . . , 𝑓𝑛 ∈ K[𝑥1, . . . , 𝑥𝑛],
we say V (𝑓1) , . . . ,V (𝑓𝑛) have a common component which passes through 𝑝 if when we write
V (𝑓1, . . . , 𝑓𝑛) as a union of its irreducible components, say V1 ∪ . . . ∪ V𝑚 , one component V𝑖

contains 𝑝 . For convenience, we also say that 𝑓1, . . . , 𝑓𝑛 have a common component through 𝑝 when
V (𝑓1) , . . . ,V (𝑓𝑛) have a common component which passes through 𝑝 . Recall that an algebraic set
𝑉 ⊆ A𝑛 is zero-dimensional if it contains only finitely many points of A𝑛 . In this section, all ideals
are in the local ring at 𝑝 , where 𝑝 is often implicitly given.

Definition 2.1 (Local Ring). We define the local ring at 𝑝 as

OA𝑛,𝑝 :=
{
𝑓

𝑔
| 𝑓 , 𝑔 ∈ K[𝑥1, . . . , 𝑥𝑛] where 𝑔(𝑝) ̸= 0

}
.

Local rings have a unique maximal ideal. For OA𝑛,𝑝 , all elements which vanish on 𝑝 are in the
maximal ideal and all of those that do not are units. Hence, given an element 𝑓 ∈ K[𝑥1, . . . , 𝑥𝑛] we
can test whether 𝑓 is invertible in OA𝑛,𝑝 by testing 𝑓 (𝑝) ̸= 0.

Definition 2.2 (Intersection Multiplicity). Let 𝑓1, . . . , 𝑓𝑛 ∈ K[𝑥1, . . . , 𝑥𝑛]. We define the intersection
multiplicity of 𝑓1, . . . , 𝑓𝑛 at 𝑝 ∈ A𝑛 as the dimension of the local ring at 𝑝 modulo the ideal generated
by 𝑓1, . . . , 𝑓𝑛 in the local ring at 𝑝 , as a vector space over K. That is,

IM (𝑝; 𝑓1, . . . , 𝑓𝑛) := dimK
(
OA𝑛,𝑝 /⟨𝑓1, . . . , 𝑓𝑛⟩

)
.

An important tool used in the extension of Fulton’s algorithm is that of the regular sequence. The
authors of [8] require the input system of polynomials form a regular sequence in the local ring
at the point of interest. Regular sequences in Noetherian local rings enjoy several nice properties
described in [6, Section 3-1], namely, in such a case, being a regular sequence is invariant under
permutation. In light of this, we give a simplified definition of a regular sequence, since all regular
sequences discussed in this paper will satisfy the above constraint.

, Vol. 1, No. 1, Article . Publication date: November 2021.

Computing Intersection Multiplicities with Regular Chains 3

Definition 2.3 (Regular Sequence). When 𝑓1, . . . , 𝑓𝑛 ∈ K[𝑥1, . . . , 𝑥𝑛] generate a proper ideal in the
local ring at 𝑝 , we say 𝑓1, . . . , 𝑓𝑛 is a regular sequence if no 𝑓𝑖 is zero or a zero divisor modulo
⟨𝑓1, . . . , 𝑓̂𝑖 , . . . , 𝑓𝑛⟩, where 𝑓̂𝑖 denotes the omission of 𝑓𝑖 .

Often, we will simply say 𝑓1, . . . , 𝑓𝑛 is a regular sequence when the point 𝑝 is implicit.

2.2 Fulton’s Algorithm
It is shown in [5, Section 3-3] that the following seven properties characterize intersection multi-
plicity of bivariate curves. Moreover, these seven properties lead to an algorithmic construction
which computes the intersection multiplicity of a pair of bivariate curves, see Algorithm 1.

Proposition 2.4 (Fulton’s Properties). Let 𝑝 = (𝑝1, 𝑝2) ∈ A2 and 𝑓 , 𝑔 ∈ K[𝑥,𝑦].
(2-1) IM (𝑝; 𝑓 , 𝑔) is a non-negative integer when V (𝑓) and V (𝑔) have no common component at 𝑝 ,

otherwise IM (𝑝; 𝑓 , 𝑔) = ∞.
(2-2) IM (𝑝; 𝑓 , 𝑔) = 0 if and only if 𝑝 ̸∈ V (𝑓) ∩ V (𝑔).
(2-3) IM (𝑝; 𝑓 , 𝑔) is invariant under affine changes of coordinates on A2.
(2-4) IM (𝑝; 𝑓 , 𝑔) = IM (𝑝; 𝑔, 𝑓).
(2-5) IM (𝑝; 𝑓 , 𝑔) ≥ 𝑚𝑓𝑚𝑔 where𝑚𝑓 and𝑚𝑔 are the respective tailing degrees of 𝑓 and 𝑔 expressed in

K[𝑥 − 𝑝1, 𝑦 − 𝑝2]. Moreover, IM (𝑝; 𝑓 , 𝑔) =𝑚𝑓𝑚𝑔 when V (𝑓) and V (𝑔) intersect transversally, i.e.
have no tangent lines in common.

(2-6) IM (𝑝; 𝑓 , 𝑔ℎ) = IM (𝑝; 𝑓 , 𝑔) + IM (𝑝; 𝑓 , ℎ) for any ℎ ∈ K[𝑥,𝑦].
(2-7) IM (𝑝; 𝑓 , 𝑔) = IM (𝑝; 𝑓 , 𝑔 + ℎ𝑓) for any ℎ ∈ K[𝑥,𝑦].

Remark 1. We use uppercase IM to denote intersection multiplicities and lowercase im to denote the
procedures used to compute intersection multiplicities.

Algorithm 1: Fulton’s algorithm
1 Function im(𝑝; 𝑓 , 𝑔)

Input: Let: 𝑥 ≻ 𝑦
(1) 𝑝 ∈ A2 the origin.
(2) 𝑓 , 𝑔 ∈ K[𝑥,𝑦] such that gcd(𝑓 , 𝑔)(𝑝) ̸= 0.
Output: IM (𝑝; 𝑓 , 𝑔)

2 if 𝑓 (𝑝) ̸= 0 or 𝑔(𝑝) ̸= 0 then /* Red */
3 return 0
4 𝑟 := deg𝑥 (𝑓 (𝑥, 0))
5 𝑠 := deg𝑥 (𝑔(𝑥, 0))
6 if 𝑟 > 𝑠 then /* Green */
7 return im(𝑝;𝑔, 𝑓)

8 if 𝑟 < 0 then /* 𝑦 | 𝑓 , Yellow */
9 write 𝑔(𝑥, 0) = 𝑥𝑚(𝑎𝑚 + 𝑎𝑚+1𝑥 + . . .)

10 return𝑚 + im(𝑝; quo(𝑓 , 𝑦;𝑦), 𝑔)

11 else /* Blue */
12 𝑔′ := lc(𝑓 (𝑥, 0))𝑔 − (𝑥)𝑠−𝑟 lc(𝑔(𝑥, 0))𝑓
13 return im(𝑝; 𝑓 , 𝑔′)

, Vol. 1, No. 1, Article . Publication date: November 2021.

4 Jürgen Gerhard, Marc Moreno Maza, and Ryan Sandford

The following proposition was proved by Fulton in [5, Section 3-3]. It is included here for the
reader’s convenience.

Proposition 2.5. Algorithm 1 is correct and terminates.

Proof. By (2-3) we may assume 𝑝 is the origin. Let 𝑓 , 𝑔 be polynomials in K[𝑥,𝑦] with no
common component through the origin. By (2-1), IM (𝑝; 𝑓 , 𝑔) is finite. We induct on IM (𝑝; 𝑓 , 𝑔) to
prove termination. Suppose IM (𝑝; 𝑓 , 𝑔) = 0, then by (2-2), at least one of 𝑓 or 𝑔 does not vanish at
the origin and algorithm 1 correctly returns zero.
Now suppose 𝑛 := IM (𝑝; 𝑓 , 𝑔) > 0 for some 𝑛 ∈ N. Let 𝑟, 𝑠 be the respective degrees of 𝑓 , 𝑔 evaluated
at (𝑥, 0). By (2-4) we may reorder 𝑓 , 𝑔 to ensure 𝑟 ≤ 𝑠 . Notice 𝑟, 𝑠 ̸= 0 since 𝑓 , 𝑔 vanish at the origin.
If 𝑟 < 0, then 𝑓 is a univariate polynomial in 𝑦 which vanishes at the origin, hence 𝑓 is divisible by
𝑦. By (2-6) we have,

IM (𝑝; 𝑓 , 𝑔) = IM (𝑝; 𝑦,𝑔) + IM (𝑝; quo(𝑓 , 𝑦;𝑦), 𝑔) .
By definition of intersection multiplicity IM (𝑝; 𝑦,𝑔) = IM (𝑝; 𝑦,𝑔(𝑥, 0)). Since 𝑔(𝑥, 0) vanishes at the
origin and since 𝑔 has no common component with 𝑓 at the origin, 𝑔(𝑥, 0) is a non-zero univariate
polynomial divisible by 𝑥 . Write 𝑔(𝑥, 0) = 𝑥𝑚(𝑎𝑚 + 𝑎𝑚+1𝑥 + . . .) for some 𝑎𝑚, 𝑎𝑚+1, . . . ∈ K where𝑚
is the largest positive integer such that 𝑎𝑚 ̸= 0. Applying (2-6), (2-5), and (2-2) yields

IM (𝑝; 𝑓 , 𝑔) =𝑚 + IM (𝑝; quo(𝑓 , 𝑦;𝑦), 𝑔) .
Thus, algorithm 1 returns correctly when 𝑟 < 0. Moreover, we can compute IM (𝑝; quo(𝑓 , 𝑦;𝑦), 𝑔) <
𝑛 by induction.
Now suppose 0 < 𝑟 < 𝑠 . By (2-7), replacing 𝑔 with 𝑔′ preserves the intersection multiplicity. Notice
such a substitution strictly decreases the degree in 𝑥 of 𝑔(𝑥, 0). After finitely many iterations, we
will obtain curves 𝐹,𝐺 such that IM (𝑝; 𝑓 , 𝑔) = IM (𝑝; 𝐹,𝐺) and the degree in 𝑥 of 𝐹 (𝑥, 0) < 0. ♮

2.3 The Generalization of Fulton’s Algorithm
The following generalization of Fulton’s properties was stated in [7] and proved in [9].

Theorem 2.6. Let 𝑓1, . . . , 𝑓𝑛 be polynomials inK[𝑥1, . . . , 𝑥𝑛] such that V (𝑓1, . . . 𝑓𝑛) is zero-dimensional.
Let 𝑝 = (𝑝1, . . . , 𝑝𝑛) ∈ A𝑛 . Then, the intersection multiplicity IM (𝑝; 𝑓1, . . . , 𝑓𝑛) satisfies (n-1) to (n-7)
where:

(n-1) IM (𝑝; 𝑓1, . . . , 𝑓𝑛) is a non-negative integer.
(n-2) IM (𝑝; 𝑓1, . . . , 𝑓𝑛) = 0 if and only if 𝑝 ̸∈ V (𝑓1, . . . , 𝑓𝑛).
(n-3) IM (𝑝; 𝑓1, . . . , 𝑓𝑛) is invariant under affine changes of coordinates on A𝑛 .
(n-4) IM (𝑝; 𝑓1, . . . , 𝑓𝑛) = IM (𝑝; 𝜎(𝑓1, . . . , 𝑓𝑛)) where 𝜎 is any permutation.
(n-5) IM (𝑝; (𝑥1 − 𝑝1)𝑚1 , . . . , (𝑥𝑛 − 𝑝𝑛)𝑚𝑛) =𝑚1 · · ·𝑚𝑛 for any 𝑚1, . . . ,𝑚𝑛 ∈ N.
(n-6) IM (𝑝; 𝑓1, . . . , 𝑓𝑛−1, 𝑔ℎ) = IM (𝑝; 𝑓1, . . . , 𝑓𝑛−1, 𝑔)+IM (𝑝; 𝑓1, . . . , 𝑓𝑛−1, ℎ) for any𝑔, ℎ ∈ K[𝑥1, . . . , 𝑥𝑛]

such that 𝑓1, . . . , 𝑓𝑛−1, 𝑔ℎ is a regular sequence in OA𝑛,𝑝 .
(n-7) IM (𝑝; 𝑓1, . . . , 𝑓𝑛) = IM (𝑝; 𝑓1, . . . , 𝑓𝑛−1, 𝑓𝑛 + 𝑔) for any 𝑔 ∈ ⟨𝑓1, . . . , 𝑓𝑛−1⟩.

Using these properties, the authors of [8] were able to extend Fulton’s bivariate intersection
multiplicity algorithm, to a partial algorithm in the 𝑛-variate setting. The algorithm does not
generalize to a complete algorithm as one of the steps in Fulton’s algorithm, namely the application
of (2-7) on line 12, does not hold generically in the 𝑛-variate case.
Recall the values of 𝑟 and 𝑠 computed in lines 4-5 of algorithm 1 were used to partition Fulton’s
algorithm into several cases. Extending the computation of these values to the general setting is
one of the key steps in the generalization of Fulton’s algorithm. When generalizing this step, it
quickly becomes clear that partitioning the algorithm into cases does not accurately reflect the

, Vol. 1, No. 1, Article . Publication date: November 2021.

Computing Intersection Multiplicities with Regular Chains 5

stucture of the procedure. Hence, to understand the behaviour of the generalized procedure, we
introduce the notion of modular degrees.

Definition 2.7 (Modular Degree). Let 𝑓 be a polynomial in K[𝑥1, . . . , 𝑥𝑛], 𝑝 = (𝑝1, . . . , 𝑝𝑛) ∈ A𝑛 , and
𝑥𝑖 some variable in {𝑥1, . . . , 𝑥𝑛}. Then the modular degree of 𝑓 at 𝑝 with respect to 𝑥𝑖 is the degree
in 𝑥𝑖 of 𝑓 mod ⟨𝑥𝑖+1 − 𝑝𝑖+1, . . . , 𝑥𝑛 − 𝑝𝑛⟩.

When 𝑝 is the origin, we denote themodular degree of 𝑓 at 𝑝 with respect to some𝑥𝑖 asmoddeg(𝑓 , 𝑥𝑖).
Lemma 1 of [8] gives sufficient conditions, in terms of modular degrees, to split the intersection
multiplicity computation into the sum of 𝑛 strictly smaller intersection multiplicity computations.
Simply put, when the matrix of modular degrees, i.e. the matrix whose 𝑖, 𝑗-th entry is the modular
degree of 𝑓𝑖 at 𝑝 with respect to 𝑥 𝑗 , has all entries above the anti-diagonal equal to negative infinity,
the intersection multiplicity computation can split. In light of this, the blue case and green case
of Fulton’s algorithm can be seen as matrix operations which strictly decrease the entries in one
column of the matrix of modular degrees, and moreover reorder them to lie above the anti-diagonal.

, Vol. 1, No. 1, Article . Publication date: November 2021.

6 Jürgen Gerhard, Marc Moreno Maza, and Ryan Sandford

Algorithm 2: Generalized Fulton’s Algorithm
1 Function imn(𝑝; 𝑓1, . . . , 𝑓𝑛)

Input: Let: 𝑥1 ≻ . . . ≻ 𝑥𝑛 .
(1) 𝑝 ∈ A𝑛 the origin.
(2) 𝑓1, . . . , 𝑓𝑛 ∈ K[𝑥1, . . . , 𝑥𝑛] such that 𝑓1, . . . , 𝑓𝑛 form a regular sequence in OA𝑛,𝑝 or one such 𝑓𝑖 is

a unit in OA𝑛,𝑝 .
Output: IM (𝑝; 𝑓1, . . . , 𝑓𝑛) or Fail

2 if 𝑓𝑖 (𝑝) ̸= 0 for any i=1,. . . ,n then /* Red */
3 return 0
4 if 𝑛 = 1 then /* Compute multiplicity */
5 return max(𝑚 ∈ Z+ | 𝑓𝑛 ≡ 0 mod ⟨𝑥𝑚1 ⟩)
6 for 𝑖 = 1, . . . , 𝑛 do
7 for 𝑗 = 1, . . . , 𝑛 − 1 do
8 𝑟

(𝑖)
𝑗

:= moddeg(𝑓𝑖 , 𝑥 𝑗)

9 for 𝑗 = 1, . . . , 𝑛 − 1 do /* Orange */

10 Reorder 𝑓1, . . . , 𝑓𝑛−𝑗+1 so that 𝑟 (1)
𝑗
≤ . . . ≤ 𝑟

(𝑛−𝑗+1)
𝑗

/* Green */

11 𝑚 := min(𝑖 | 𝑟 (𝑖)
𝑗

> 0) or𝑚 ←∞ if no such 𝑖 exists
12 if 𝑚 ≤ (𝑛 − 𝑗) then
13 for 𝑖 =𝑚 + 1, . . . , 𝑛 − 𝑗 + 1 do /* Blue */

14 𝑑 := 𝑟
(𝑖)
𝑗
− 𝑟 (𝑚)

𝑗

15 𝐿𝑚 := lc(𝑓𝑚(𝑥1, . . . , 𝑥 𝑗 , 0, . . . , 0);𝑥 𝑗)
16 𝐿𝑖 := lc(𝑓𝑖 (𝑥1, . . . , 𝑥 𝑗 , 0, . . . , 0);𝑥 𝑗)
17 if 𝐿𝑚(𝑝) ̸= 0 then
18 𝑓 ′𝑖 := 𝐿𝑚 𝑓𝑖 − 𝑥𝑑𝑗 𝐿𝑖 𝑓𝑚
19 else if 𝐿𝑚 | 𝐿𝑖 then
20 𝑓 ′𝑖 := 𝑓𝑖 − 𝑥𝑑𝑗

𝐿𝑖
𝐿𝑚

𝑓𝑚

21 else
22 return Fail

23 return imn(𝑝; 𝑓1, . . . , 𝑓𝑚, 𝑓 ′𝑚+1, . . . , 𝑓
′
𝑛−𝑗+1, . . . , 𝑓𝑛)

24 /* Yellow */

25 for 𝑖 = 1, . . . , 𝑛 − 1 do
26 𝑞𝑖 := quo(𝑓𝑖 (𝑥1, . . . , 𝑥𝑛−𝑖+1, 0, . . . , 0), 𝑥𝑛−𝑖+1;𝑥𝑛−𝑖+1)
27 return
28 imn(𝑝;𝑞1, 𝑓2, . . . , 𝑓𝑛)
29 + imn−1(𝑝;𝑞2(𝑥1, . . . , 𝑥𝑛−1, 0), . . . , 𝑓𝑛(𝑥1, . . . , 𝑥𝑛−1, 0))
30 +

31
...

32 +im2(𝑝;𝑞𝑛−1(𝑥1, 𝑥2, 0, . . . , 0), 𝑓𝑛(𝑥1, 𝑥2, 0, . . . , 0))
33 +im1(𝑝; 𝑓𝑛(𝑥1, 0, . . . , 0))

, Vol. 1, No. 1, Article . Publication date: November 2021.

Computing Intersection Multiplicities with Regular Chains 7

A full proof of algorithm 2 can be found in [8]. We will refer to the step described in lines 27 to 33
as splitting and we will refer to the recursive calls made in these lines as branches of computation,
or branches for short.
The following example illustrates the rewriting process, and in particular, how it is used to obtain a
matrix of modular degrees with a triangular shape.

Example 2.8. Let 𝑓1, 𝑓2, 𝑓3 ∈ K[𝑥,𝑦, 𝑧] be given by 𝑓1 = 𝑥2, 𝑓2 = (𝑥 + 1)𝑦 + 𝑥3, 𝑓3 = 𝑦2 + 𝑧 + 𝑥3. Suppose
we wish to compute the intersection multiplicity at 𝑝 , the origin. The matrix of modular degrees
computed in lines 6-8 of algorithm 2 is:

𝑟 =

2 0
3 1
3 2

 ,
where the 𝑖-th row corresponds to the polynomial 𝑓𝑖 and the 𝑗-th column corresponds to the variable
𝑥 𝑗 . Hence, (𝑖, 𝑗)-th entry is the modular degree of 𝑓𝑖 with respect to 𝑥 𝑗 . Note that we omit the last
column which corresponds to the modular degrees with respect to 𝑧, as this column has no effect
on the conditions necessary to apply Lemma 1 of [8], as to split computations.
Since 𝑓1 has minimal modular degree with respect to 𝑥 , we choose 𝑓1 as a pivot and use it to reduce
the modular degrees of 𝑓2 and 𝑓3 with respect to 𝑥 . Write

𝑓 ′2 := 𝑓2 − 𝑥 𝑓1 = (𝑥 + 1)𝑦 + 𝑥3 − 𝑥3 = (𝑥 + 1)𝑦,

and
𝑓 ′3 := 𝑓3 − 𝑥 𝑓1 = 𝑦2 + 𝑧 + 𝑥3 − 𝑥3 = 𝑦2 + 𝑧.

By (𝑛-7) we may redefine 𝑓2 := 𝑓 ′2 and 𝑓3 := 𝑓 ′3 . Hence, we consider the system given by 𝑓1 = 𝑥2, 𝑓2 =
(𝑥 + 1)𝑦, 𝑓3 = 𝑦2 + 𝑧. The matrix of modular degrees is now:

𝑟 =

2 0
−∞ 1
−∞ 2

 ,
and after reordering 𝑓1, 𝑓2, 𝑓3 by modular degree with respect to 𝑥 , we have 𝑓1 = (𝑥 + 1)𝑦, 𝑓2 =
𝑦2 + 𝑧, 𝑓3 = 𝑥2, with matrix of modular degrees:

𝑟 =

−∞ 1
−∞ 2
2 0

 .
Since 𝑓1 has minimal modular degree with respect to 𝑦, and moreover the leading coefficient of 𝑓1
mod ⟨𝑧⟩ is 𝑥 + 1 which is invertible in the local ring at the origin, we may choose 𝑓1 as a pivot and
use it to reduce the modular degree of 𝑓2 with respect to 𝑦. Write

𝑓 ′2 := (𝑥 + 1)𝑓2 − 𝑦𝑓1 = (𝑥 + 1)𝑦2 + (𝑥 + 1)𝑧 − (𝑥 + 1)𝑦2 = (𝑥 + 1)𝑧.

Redefining 𝑓2 := 𝑓 ′2 and reordering by modular degree in𝑦, we have 𝑓1 = (𝑥 +1)𝑧, 𝑓2 = (𝑥 +1)𝑦, 𝑓3 = 𝑥2,

and the matrix of modular degrees is now:

𝑟 =

−∞ −∞
−∞ 1
2 0

 .
, Vol. 1, No. 1, Article . Publication date: November 2021.

8 Jürgen Gerhard, Marc Moreno Maza, and Ryan Sandford

By applying Lemma 1 of [8] and splitting computations we conclude:

IM (𝑝; 𝑓1, 𝑓2, 𝑓3)
= IM (𝑝; 𝑥 + 1, 𝑓2, 𝑓3) + IM (𝑝; 𝑧, 𝑓2, 𝑓3)

= IM (𝑝; 𝑥 + 1, 𝑓2, 𝑓3) + IM (𝑝; 𝑧, 𝑥 + 1, 𝑓3) + IM (𝑝; 𝑧,𝑦, 𝑓3)
= 0 + 0 + 2.

3 Regular Chains
This section is a short review of concepts from the theory of regular chains and triangular decom-
positions of polynomial systems. Details can be found in [2].
Assume that K is a perfect field. Let K be the algebraic closure of K and K[𝑋] be the polynomial
ring with over K and with 𝑛 ordered variables 𝑋 = 𝑋1 ≻ . . . ≻ 𝑋𝑛 . For 𝐹 ⊆ K[𝑋], we denote by ⟨𝐹 ⟩
and 𝑉 (𝐹) the ideal generated by 𝐹 in K[𝑋] and the algebraic set of K

𝑛
consisting of the common

roots of the polynomials of 𝐹 , respectively.

3.1 Notations for polynomials
Let 𝑎, 𝑏 ∈ K[𝑋] be polynomials, with 𝑏 ̸∈ K. Denote by mvar(𝑏), init(𝑏) and mdeg(𝑏) respectively,
the greatest variable appearing in 𝑏 (called the main variable of 𝑏), the leading coefficient of 𝑏
w.r.t. mvar(𝑏) (called the initial of 𝑏) and the degree of 𝑏 w.r.t. mvar(𝑏) (called the main degree
of 𝑏). We denote by prem(𝑎, 𝑏) and pquo(𝑎, 𝑏) the pseudo-remainder and pseudo-quotient in the
pseudo-division of 𝑎 by 𝑏; those are, respectively the (uniquely defined) polynomials 𝑟 and 𝑞

such that ℎ𝑒𝑎 = 𝑞𝑏 + 𝑟 and 𝑟 = 0 or deg(𝑟, 𝑣) < mdeg(𝑏) where 𝑣 = mvar(𝑏), ℎ = init(𝑏) and
𝑒 = max(0, deg(𝑎, 𝑣) −mdeg(𝑏) + 1).

3.2 Triangular set
Let 𝑇 ⊆ K[𝑋] be a triangular set, that is, a set of non-constant polynomials with pairwise distinct
main variables. Denote by mvar(𝑇) the set of main variables of the polynomials in 𝑇 . A variable
𝑣 ∈ 𝑋 is called algebraic w.r.t.𝑇 if 𝑣 ∈ mvar(𝑇), otherwise it is said free w.r.t.𝑇 . For 𝑣 ∈ mvar(𝑇), we
denote by 𝑇𝑣 and 𝑇 −𝑣 (resp. 𝑇 +

𝑣) the polynomial 𝑓 ∈ 𝑇 with mvar(𝑓) = 𝑣 and the polynomials 𝑓 ∈ 𝑇
with mvar(𝑓) < 𝑣 (resp. mvar(𝑓) > 𝑣). Let ℎ𝑇 be the product of the initials of the polynomials of 𝑇 .
We denote by sat(𝑇) the saturated ideal of𝑇 : if𝑇 = ∅ holds, then sat(𝑇) is defined as the trivial ideal
⟨0⟩, otherwise it is the ideal ⟨𝑇 ⟩ : ℎ∞

𝑇
. The quasi-component𝑊 (𝑇) of 𝑇 is defined as 𝑉 (𝑇) \𝑉 (ℎ𝑇).

The Zariski closure of𝑊 (𝑇) in K
𝑛
, denoted by𝑊 (𝑇), is the intersection of all algebraic sets𝑉 ⊆ K𝑛

such that𝑊 (𝑇) ⊆ 𝑉 holds; moreover we have𝑊 (𝑇) = 𝑉 (sat(𝑇)).

3.3 Regular chain
A triangular set 𝑇 ⊆ K[𝑋] is a regular chain if either 𝑇 is empty, or letting 𝑣 be the largest variable
occurring in 𝑇 , the set 𝑇 −𝑣 is a regular chain, and the initial of 𝑇𝑣 is regular (that is, neither zero nor
zero divisor) modulo sat(𝑇 −𝑣). The dimension of𝑇 , denoted by dim(𝑇), is by definition, the dimension
of its saturated ideal and, as a property, equals 𝑛 − |𝑇 |, where |𝑇 | is the number of elements of
𝑇 . If 𝑇 has dimension zero, then 𝑇 generates sat(𝑇) and we have 𝑉 (𝑇) =𝑊 (𝑇). A regular chain 𝑇 ,
is square-free if for all 𝑡 ∈ 𝑇 , the polynomial der(𝑡) is regular w.r.t. sat(𝑇), where der(𝑡) = 𝜕𝑡

𝜕𝑣
and

𝑣 = mvar(𝑡). When the regular chain 𝑇 is square-free, then the ideal sat(𝑇) is radical.

3.4 Normalized regular chain
The regular chain 𝑇 ⊆ K[𝑋] is said normalized if for every 𝑣 ∈ mvar(𝑇), none of the variables
occurring in init(𝑇𝑣) is algebraic w.r.t.𝑇 −𝑣 . Denote by 𝑑 the dimension of𝑇 . Let 𝑌 and𝑈 = 𝑈1, . . . ,𝑈𝑑

, Vol. 1, No. 1, Article . Publication date: November 2021.

Computing Intersection Multiplicities with Regular Chains 9

stand respectively for mvar(𝑇) and 𝑋 \ 𝑌 . Then, the fact that 𝑇 is normalized means that for every
𝑡 ∈ 𝑇 we have init(𝑡) ∈ K[𝑈]. It follows that if 𝑇 is normalized, then 𝑇 is a lexicographical Gröbner
basis of the ideal that 𝑇 generates in (K[𝑈])[𝑌] (that is, over the field (K[𝑈]) of rational functions),
and we denote NF (𝑝, 𝑇) the normal form a polynomial 𝑝 ∈ (K[𝑈])[𝑌] w.r.t.𝑇 as this Gröbner basis.
In particular, if 𝑇 is normalized and has dimension zero, then for every 𝑡 ∈ 𝑇 we have init(𝑡) ∈ K.

3.5 Regular GCD
Let 𝑖 be an integer with 1 ≤ 𝑖 ≤ 𝑛, let𝑇 ⊆ K[𝑋] be a regular chain, let 𝑝, 𝑡 ∈ K[𝑋]\K be polynomials
with the same main variable 𝑋𝑖 , and 𝑔 ∈ K or 𝑔 ∈ K[𝑋] with mvar(𝑔) ≤ 𝑋𝑖 . Assume that
(1) 𝑋𝑖 > 𝑋 𝑗 holds for all 𝑋 𝑗 ∈ mvar(𝑇), and
(2) both init(𝑝) and init(𝑡) are regular w.r.t. sat(𝑇).

Denote by A the total ring of fractions of the residue class ring K[𝑋𝑖+1, . . . , 𝑋𝑛]/
√︁
sat(𝑇). Note that

A is isomorphic to a direct product of fields. We say that 𝑔 is a regular GCD of 𝑝, 𝑡 w.r.t.𝑇 whenever
the following conditions hold:

(𝐺1) the leading coefficient of 𝑔 in 𝑋𝑖 is a regular element of A;
(𝐺2) 𝑔 belongs to the ideal generated by 𝑝 and 𝑡 in A[𝑋𝑖]; and
(𝐺3) if deg(𝑔,𝑋𝑖) > 0, then 𝑔 divides both 𝑝 and 𝑡 in A[𝑋𝑖], that is, both prem(𝑝,𝑔) and prem(𝑡, 𝑔)

belong to
√︁
sat(𝑇).

Assume from now on that 𝑇 has as many polynomials as variables. Assume also that 𝑋𝑖 is the only
variable occurring in 𝑝 or 𝑡 which is not algebraic in𝑇 . Therefore, the three triangular sets𝑇 ,𝑇 ∪{𝑝}
and 𝑇 ∪ {𝑡} can be regarded as zero-dimensional regular chains. Then, with this configuration,
Conditions (𝐺1), (𝐺2), (𝐺3) imply the following properties:
(1) if deg(𝑔,𝑋𝑖) = 0 holds then 𝑝 is regular (actually invertible) modulo ⟨𝑇 ∪ 𝑡⟩,
(2) if deg(𝑔,𝑋𝑖) > 0 and mdeg(𝑔) = mdeg(𝑡) both hold, then

√︁
⟨𝑇 ∪ 𝑡⟩ =

√︁
⟨𝑇 ∪ 𝑔⟩ holds and thus

we have 𝑉 (𝑇 ∪ 𝑡) = 𝑉 (𝑇 ∪ 𝑔),
(3) if deg(𝑔,𝑋𝑖) > 0 and mdeg(𝑔) < mdeg(𝑡) both hold, let 𝑞 = pquo(𝑡, 𝑔), then 𝑇 ∪ 𝑞 is a regular

chain and the following two relations hold:
(𝑎)

√︁
⟨𝑇 ∪ 𝑡⟩ =

√︁
⟨𝑇 ∪ 𝑔⟩ ∩

√︁
⟨𝑇 ∪ 𝑞⟩,

(𝑏) 𝑉 (𝑇 ∪ 𝑡) = 𝑉 (𝑇 ∪ 𝑔) ∪𝑉 (𝑇 ∪ 𝑞).

3.6 The algorithm RegularGCD

Let 𝑇, 𝑝, 𝑡 be as in the previous section. In particular, we assume that 𝑇 , 𝑇 ∪ {𝑝} and 𝑇 ∪ {𝑡} are
zero-dimensional regular chains. Then, the function call RegularGcd(𝑝, 𝑡,𝑇) returns a a set of pairs
(𝑔1,𝑇1), . . . , (𝑔𝑒 ,𝑇𝑒) where
(1) 𝑇1, . . . ,𝑇𝑒 ⊆ K[𝑋] are regular chains such that 𝑉 (𝑇) = 𝑉 (𝑇1) ∪ · · · ∪𝑉 (𝑇𝑒),
(2) 𝑔1, . . . , 𝑔𝑒 ∈ K[𝑋] are polynomials such that for every 𝑖 = 1 · · · 𝑒 , the polynomial 𝑔𝑖 is a regular

GCD of 𝑝, 𝑡 w.r.t. 𝑇𝑖 , and
(3) if 𝑇 is square-free (resp. normalized) then all regular chains 𝑇1, . . . ,𝑇𝑒 are square-free (resp.

normalized).

3.7 The algorithm Regularize

Let 𝑇, 𝑝 be as in the previous section. The function call Regularize(𝑝,𝑇) computes a set of regular
chains 𝑇1, . . . ,𝑇𝑒 ⊆ K[𝑋] such that:
(1) for each 𝑖 = 1, . . . , 𝑒 , either 𝑝 ∈ ⟨𝑇𝑖⟩ holds or 𝑝 is regular w.r.t. ⟨𝑇𝑖⟩,
(2) we have 𝑉 (𝑇) = 𝑉 (𝑇1) ∪ · · · ∪𝑉 (𝑇𝑒),

, Vol. 1, No. 1, Article . Publication date: November 2021.

10 Jürgen Gerhard, Marc Moreno Maza, and Ryan Sandford

(3) moreover, if 𝑇 is square-free (resp. normalized) then all regular chains 𝑇1, . . . ,𝑇𝑒 are square-free
(resp. normalized).

For 𝐹 ⊆ K[𝑋], the function call RegularizeList(𝐹,𝑇) computes a pair of sets of regular chains
𝑇1, . . . ,𝑇𝑒 ⊆ K[𝑋] such that:

(1) for each 𝑖 = 1, . . . , 𝑒 , for each 𝑝 ∈ 𝐹 either 𝑝 ∈ ⟨𝑇𝑖⟩ holds or 𝑝 is regular w.r.t. ⟨𝑇𝑖⟩,
(2) we have 𝑉 (𝑇) = 𝑉 (𝑇1) ∪ · · · ∪𝑉 (𝑇𝑒),
(3) moreover, if 𝑇 is square-free (resp. normalized) then all regular chains 𝑇1, . . . ,𝑇𝑒 are square-free

(resp. normalized).

In practice RegularizeList(𝐹,𝑇) will separate the regular chains for which 𝑝 is regular from those
which generate an ideal containing 𝑝 , for each 𝑝 ∈ 𝐹 . That is, if RegularizeList(𝐹,𝑇) returns a pair
𝑈 ,𝑉 , we will let𝑈 denote the set of regular chains for which all 𝑝 ∈ 𝐹 are regular and 𝑉 the set of
regular chains for which 𝑝 ∈ ⟨𝑇𝑖⟩ for all 𝑇𝑖 ∈ 𝑉 and 𝑝 ∈ ⟨𝐹 ⟩.

3.8 Triangular decomposition
Let 𝐹 ⊆ K[𝑋]. Regular chains𝑇1, . . . ,𝑇𝑒 ofK[𝑋] form a triangular decomposition of𝑉 (𝐹) in the sense
of Kalkbrener (resp. Wu and Lazard) whenever we have 𝑉 (𝐹) = ∪𝑒𝑖=1𝑊 (𝑇𝑖) (resp. 𝑉 (𝐹) = ∪𝑒𝑖=1𝑊 (𝑇𝑖)).
Hence, a triangular decomposition of𝑉 (𝐹) in the sense of Wu and Lazard is necessarily a triangular
decomposition of 𝑉 (𝐹) in the sense of Kalkbrener, while the converse is not true.

3.9 Computing Intersection Multiplicities with Regular Chains
A standard basis free algorithm to compute intersection multiplicities using regular chains was
investigated in [1, 7] by Steffen Marcus, Marc Moreno Maza, and Paul Vrbik, with a full description
given in the PhD thesis of Vrbik [9]. By applying a reduction criterion based on tangent cones, the
algorithm seeks to reduce a system of 𝑛 polynomials in 𝑛 variables to a system with 𝑛 − 1 polyno-
mials in 𝑛 − 1 variables, while preserving the intersection multiplicity. Upon repeated, successful
applications of the criterion, one can reduce a system to the bivariate case where Fulton’s algorithm
may be applied. This algorithm was implemented in 𝑀𝑎𝑝𝑙𝑒 in the IntersectionMultiplicity
command.

4 Fulton’s Algorithm and It’s Generalization Using Regular Chains
Both Fulton’s algorithm and its generalization assume the point 𝑝 is the origin. When 𝑝 is rational,
both algorithms can easily be adapted to handle this case directly rather than applying property (𝑛-3)
and performing an affine change of coordinates. When 𝑝 is not rational, encoding 𝑝 symbolically
presents practical challenges that should be addressed in our implementation of the generalization
of Fulton’s algorithm.
One natural way of encoding these non-rational points, is as a solution to a system of polynomial
equations. This can be done using a zero-dimensional regular chain to encode the point of interest.
Since intersection multiplicity is defined for a point 𝑝 , we must explain what it means to compute
the intersection multiplicity at a zero-dimensional regular chain. Namely, since a zero-dimensional
regular chain can be thought of as encoding a finite group of points in its vanishing set, we are in a
sense, defining what it means to compute the intersection multiplicity at a group of points.

Definition 4.1 (Intersection Multiplicity at a Regular Chain). Let 𝑓1, . . . , 𝑓𝑛 ∈ K[𝑥1, . . . , 𝑥𝑛] and 𝑇 ⊂
K[𝑥1, . . . , 𝑥𝑁] a zero-dimensional regular chain where 𝑁 ≥ 𝑛. If 𝑁 = 𝑛 we say IM (𝑟𝑐 ; 𝑓1, . . . , 𝑓𝑛) :=
𝑚, if IM (𝑝; 𝑓1, . . . , 𝑓𝑛) =𝑚 for every 𝑝 ∈ V (𝑇), where𝑚 ∈ N∪{∞}. If𝑁 > 𝑛we say IM (𝑟𝑐 ; 𝑓1, . . . , 𝑓𝑛) :=
𝑚, if IM

(
𝑝; 𝑇𝑥𝑁 , . . . ,𝑇𝑥𝑛+1 , 𝑓1, . . . , 𝑓𝑛

)
=𝑚 for every 𝑝 ∈ V (𝑇), where𝑚 ∈ N ∪ {∞}.

, Vol. 1, No. 1, Article . Publication date: November 2021.

Computing Intersection Multiplicities with Regular Chains 11

Similarly, in order to extend the generalization of Fulton’s algorithm to handle a zero-dimensional
regular chain as input, rather than a point, we must redefine the notion of modular degree with
respect to a regular chain.

Definition 4.2 (Modular Degree at a Regular Chain). Let 𝑓 be a polynomial in K[𝑥1, . . . , 𝑥𝑛] and
𝑇 ⊆ K[𝑥1, . . . , 𝑥𝑛] a strongly normalized, squarefree, zero-dimensional regular chain with variable
ordering 𝑥1 ≻ . . . ≻ 𝑥𝑛 . Suppose lc(NF

(
𝑓 , 𝑇 −𝑥𝑖

)
;𝑥𝑖) is regular modulo 𝑇 for some 𝑥𝑖 . Then the

modular degree of 𝑓 at 𝑇 with respect to 𝑥𝑖 is the degree in 𝑥𝑖 of NF
(
𝑓 , 𝑇 −𝑥𝑖

)
.

We shall explain why Algorithm 3 together with Algorithm 4 form a generalization of Algorithm 2
from intersection multiplicity at a point to intersection multiplicity at a (zero-dimensional) reg-
ular chain. One short explanation would be invoking the celebrated D5 Principle [4]. But, since
Algorithm 2 may already split computations, more details are needed to convince the reader.
We first observe that the specifications of Algorithm 3 generalize that of Algorithm 2, thanks to
Definition 4.1. For the pseudo-code, we will explain below how each key sequence of lines of
Algorithm 2 is adapted to Algorithm 3.

Lines 2-3: In the regular-chain adaptation, Lines 2-5 of Algorithm 3, one must separate the points
of𝑉 (𝑇) at which all polynomials 𝑓1, . . . , 𝑓𝑛 vanish from those at which one of 𝑓1, . . . , 𝑓𝑛 does not
vanish; this task is achieved with RegularizeList(𝑊,𝑇), see Section 3.7; the construction of the
set𝑊 can be seen as an optimization: indeed if all 𝑓1, . . . , 𝑓𝑛 have a null normal form w.r.t. 𝑇
then all 𝑓1, . . . , 𝑓𝑛 vanish at every point of 𝑉 (𝑇) and the call RegularizeList(𝑊,𝑇) is not needed.

Lines 4-5: these two lines in Algorithm 2 determine the trailing degree of 𝑓1, that is, the number of
times that 𝑥1 divides 𝑓1; in the regular-chain adaptation, Lines 6-9 of Algorithm 3, the role of 𝑥1 is
taken by 𝑇𝑥1 and the “divisibility test” is replaced by a Regular GCD computation. Because each
call to RegularGCD may split the computations (thus decomposing 𝑉 (𝑇)) we have dedicated an
algorithm to that task, namely Algorithm 4. A complete proof of that latter algorithm follows
from the properties of RegularGCD given in Section 3.5. We note that ensuring that all regular
chains involved in the computations are squarefree is essential: indeed, at Line 13 of Algorithm 4,
we need to make sure that the division of 𝑝 by 𝑔 removes once and only once every root common
to 𝑝 and 𝑇𝑥1 , which allows us at Line 14 to increment by 1 the current value of𝑚.

Lines 6-8: In the regular-chain adaptation, Lines 10-17 of Algorithm 3, one needs to compute
modular degrees in the sense of Definition 4.2. Indeed, the leading (or trailing) degree of a
polynomial w.r.t. to some variable at a regular chain must be the same at every point solution of
that regular chain. This explains the call RegularizeList(𝐶,𝑇) together with the test |𝑈 |+|𝑉 |> 1;
indeed, if |𝑈 |+|𝑉 |> 1 holds then there exists a polynomial in the list 𝐶 which vanishes at some
points of𝑉 (𝑇) while not vanishing at the others, that is, one modular degree is not well-defined,
an issue which is resolved by splitting the computations at Line 17 of Algorithm 3.

Lines 9-23: the regular-chain adaptation, Lines 18-32 of Algorithm 3, is essentially isomorphic to
its counterpart in Algorithm 2; indeed, because of the work done in Lines 10-17 of Algorithm 3,
no splitting (of the zero set 𝑉 (𝑇)) is needed.

Lines 24-33: In the regular-chain adaptation, Lines 36-50 of Algorithm 3, one must perform all
required calls to im1, . . . , imn at the same regular chains in order to calculate the sums of values
returned by those calls.

, Vol. 1, No. 1, Article . Publication date: November 2021.

12 Jürgen Gerhard, Marc Moreno Maza, and Ryan Sandford

Algorithm 3: Generalized Fulton’s Algorithm for Regular Chains
1 Function imn(𝑇 ; 𝑓1, . . . , 𝑓𝑛)

Input:
(1) 𝑓1, . . . , 𝑓𝑛 ∈ K[𝑥1, . . . , 𝑥𝑛] such that for each 𝑝 ∈ V (𝑇) either 𝑓1, . . . , 𝑓𝑛 form a regular sequence

in OA𝑛,𝑝 , or one such 𝑓𝑖 is a unit in OA𝑛,𝑝 .
(2) 𝑇 ⊂ K[𝑥1, . . . , 𝑥𝑁] is a zero-dimensional, squarefree, strongly normalized regular chain in

variables 𝑥1 ≻ . . . ≻ 𝑥𝑁 where 𝑁 ≥ 𝑛.
Output: A set of pairs [𝑚𝑖 ,𝑇𝑖] such that: (𝑖) V (𝑇) = ⋃

V (𝑇𝑖), and (𝑖𝑖)𝑚𝑖 is either
IM (𝑇𝑖 ; 𝑓1, . . . , 𝑓𝑛) or Fail

2 𝑊 := {𝑓𝑖 |NF (𝑓𝑖 , 𝑇) ̸= 0}
3 if𝑊 ̸= ∅ then
4 𝑈 ,𝑉 := RegularizeList(𝑊,𝑇)
5 return {[0, 𝐻] |𝐻 ∈ 𝑈 } ∪⋃𝐻 ∈𝑉 imn(𝐻 ; 𝑓1, . . . , 𝑓𝑛) /* Red */

6 if 𝑛 = 1 then /* Compute mulitplicity */
7 𝑈 := Regularize(𝑓1,𝑇 −𝑥1)
8 𝑈 ′ := ⋃

𝐻 ∈𝑈 {𝑇𝑥1 } ∪ 𝐻
9 return

⋃
𝐻 ∈𝑈 ′ valuation(𝑓1, 𝐻)

10 for 𝑖 = 1, . . . , 𝑛 do
11 for 𝑗 = 1, . . . , 𝑛 − 1 do /* Compute modular degrees */

12 𝐹 [𝑖][𝑗] := NF
(
𝑓𝑖 , 𝑇

−
𝑥 𝑗

)
13 𝐶[(𝑖 − 1)(𝑛 − 1) + 𝑗] := lc(𝐹 [𝑖][𝑗], 𝑥 𝑗)
14 𝑅[𝑖][𝑗] := deg𝑥 𝑗

(𝐹 [𝑖][𝑗])

15 𝑈 ,𝑉 := RegularizeList(𝐶,𝑇)
16 if |𝑈 |+|𝑉 |> 1 then
17 return

⋃
𝐻 ∈𝑈∪𝑉 imn(𝐻 ; 𝑓1, . . . , 𝑓𝑛)

18 for 𝑗 = 1, . . . , 𝑛 − 1 do /* Orange */

19 Reorder 𝑓1, . . . , 𝑓𝑛−𝑗+1 so that 𝑅[1][𝑗] ≤ . . . ≤ 𝑅[𝑛 − 𝑗 + 1][𝑗] /* Green */

20 𝑚 := min(𝑖 | 𝑅[𝑖][𝑗] > 0) or𝑚 := ∞ if no such 𝑖 exists
21 if 𝑚 ≤ (𝑛 − 𝑗) then
22 for 𝑖 =𝑚 + 1, . . . , 𝑛 − 𝑗 + 1 do /* Blue */
23 𝑑 := 𝑅[𝑖][𝑗] − 𝑅[𝑚][𝑗]
24 𝐿𝑚 := 𝐶[(𝑚 − 1)(𝑛 − 1) + 𝑗]
25 𝐿𝑖 := 𝐶[(𝑖 − 1)(𝑛 − 1) + 𝑗]
26 if NF (𝐿𝑚, 𝑟𝑐) ̸= 0 then
27 𝑓 ′𝑖 := 𝐿𝑚 𝑓𝑖 − 𝑥𝑑𝑗 𝐿𝑖 𝑓𝑚

28 else if NF
(
𝐿𝑖
𝐿𝑚

, 𝑇

)
= 0 then

29 𝑓 ′𝑖 := 𝑓𝑖 − 𝑥𝑑𝑗
𝐿𝑖
𝐿𝑚

𝑓𝑚

30 else
31 return {[𝐹𝑎𝑖𝑙,𝑇]}

32 return imn(𝑇 ; 𝑓1, . . . , 𝑓𝑚, 𝑓 ′𝑚+1, . . . , 𝑓
′
𝑛−𝑗+1, . . . , 𝑓𝑛)

, Vol. 1, No. 1, Article . Publication date: November 2021.

Computing Intersection Multiplicities with Regular Chains 13

35

36 /* Yellow */

37 tasks := im1(𝑇 ; 𝐹 [𝑛][1])
38 for 𝑖 = 2, . . . , 𝑛 − 1 do
39 newTasks := ∅
40 for task in tasks do /* each task is of the form [𝑚,𝐻], where 𝐻 is a

regular chain */
41 𝑚,𝐻 := task
42 𝑞 := quo(NF

(
𝑓𝑛−𝑖+1, 𝐻−𝑥𝑖

)
,NF

(
𝐻𝑥𝑖 , 𝐻

−
𝑥𝑖

)
;𝑥𝑖)

43 newTasks :=
newTasks ∪ {[𝑚 +𝑚′, 𝐻 ′] | [𝑚′, 𝐻 ′] ∈ imi(𝐻 ;𝑞, 𝐹 [𝑛 − 𝑖 + 2][𝑖], . . . , 𝐹 [𝑛][𝑖])}

44 tasks := newTasks
45 results := ∅
46 for task in tasks do
47 𝑚,𝐻 := task
48 𝑞 := quo(𝑓1, 𝐻𝑥1 ;𝑥𝑛)
49 results := results ∪ {[𝑚 +𝑚′, 𝐻 ′] | [𝑚′, 𝐻 ′] ∈ imn(𝐻 ;𝑞, 𝑓2, . . . , 𝑓𝑛)}
50 return results

Algorithm 4: Valuation
1 Function valuation(𝑓 ,𝑇)

Input:
(1) 𝑇 a zero-dimensional, squarefree, strongly normalized regular chain in variables 𝑥1 ≻ . . . ≻ 𝑥𝑁

where 𝑁 ≥ 𝑛.
(2) 𝑓 ∈ K[𝑥1, . . . , 𝑥𝑛] with main variable 𝑥1. Moreover, NF

(
𝑓 , 𝑇 −𝑥1

)
̸= 0.

Output: A set of pairs [𝑚𝑖 ,𝑇𝑖] such that: (𝑖) V (𝑇) = ⋃
V (𝑇𝑖), and (𝑖𝑖)

𝑚𝑖 = IM
(
𝑇𝑖 ; NF

(
𝑓 , 𝑇 −𝑖,𝑥1

))
.

2 tasks := {[𝑓 ,𝑇 , 0]}
3 results := ∅
4 while tasks ̸= ∅ do
5 𝑝,𝑇 ,𝑚 := removeElem(tasks)
6 𝐿 := RegularGcd(𝑝,𝑇𝑥1 ,𝑇 −𝑥1)
7 for 𝑔,𝐶 ∈ 𝐿 do
8 𝑑 := deg𝑥1 (𝑔)
9 𝐻 :=

{
𝑇𝑥1

}
∪𝐶

10 if 𝑑 = 0 then
11 results := results ∪ {[𝑚,𝐻]}
12 else
13 𝑞 := NF (pquo(𝑝,𝑔, 𝑥1), 𝐶)
14 tasks := tasks ∪ {[𝑞, 𝐻,𝑚 + 1]}

15 return results

, Vol. 1, No. 1, Article . Publication date: November 2021.

14 Jürgen Gerhard, Marc Moreno Maza, and Ryan Sandford

5 Implementation
In this section provide some details on the𝑀𝑎𝑝𝑙𝑒 implementation of the generalization of Fulton’s
algorithm, for both a point and a regular chain as input. Moreover, we describe the integration of
this implementation with the implementation of the algorithm of Vrbik’s PhD thesis, in the form of
a hybrid procedure, see Section 3.9.

5.1 Overloading the IntersectionMultiplicity Command
In our implementation, we overload the IntersectionMultiplicity command to handle several
different calling sequences. The first calling sequence occurs when one wishes to compute the
intersection multiplicity at a point 𝑝 , but knows the system of polynomial equations forms a
regular chain. In which case, the observation made in [8, Section 5] allows us to compute the
intersection multiplicity immediately by means of evaluation. The second calling sequence applies
the generalization of Fulton’s algorithm at a point 𝑝 . The third calling sequence seeks to utilize the
algorithm of Vrbik et al. along side the adaptation of the generalization of Fulton’s algorithm to
regular chains. That is, the third calling sequence takes a regular chain and a system of polynomial
equations and applies first, the generalization of Fulton’s algorithm and then, upon detecting a
failure, applies the algorithm of Vrbik et al.. Lastly, the final calling sequence is used to return
meaningful error messages when none of the previous calling sequences are satisfied.

5.2 IntersectionMultiplicity at a Point
The second calling sequence computes the intersection multiplicity at a point 𝑝 . This calling
sequence takes advantage of the cache option in its helper functions to compute the image of poly-
nomials and modular degrees efficiently. Moreover, this calling sequence provides some support for
coordinates and coefficients which are not rational given by RootOf. Although algebraic coordinates
can be handled by encoding them in a regular chain, allowing algebraic coordinates specified by
RootOf can simplify the calling sequence in some cases. When the system of polynomial equations,
or the point of interest contain non-rational coordinates, the normalizer environment variable is
set to evala and the algorithm proceeds as expected. Reducible RootOf errors are caught, in which
case it is recommended the user uses the calling sequence which handles regular chains.

5.3 IntersectionMultiplicity at a Regular Chain
The third calling sequence invokes a hybrid algorithm which calls first the generalization of
Fulton’s algorithm, and then if necessary, the algorithm of Vrbik et al.. We apply the generalization
of Fulton’s algorithm first in this hybrid algorithm as it is often faster and can compute more
examples than the current implementation of the algorithm of Vrbik et al., as suggested by the
results in the next section. It is possible however, that the algorithm of Vrbik et al. can succeed
in some cases where the generalization of Fulton’s algorithm fails, as we will see in the next
section; hence, a hybrid algorithm which combines the two approaches is desirable. Both the
generalization of Fulton’s algorithm and the algorithm of Vrbik et al. can be accessed individually
in the IntersectionMultiplicity command by setting the optional method keyword equal to
fulton or tangentcone respectively.

5.4 Non-Regular Sequences
The input constraints for the generalization of Fulton’s algorithm require that the system of
polynomials, 𝑓1, . . . , 𝑓𝑛 , is a regular sequence at the point 𝑝 , or in the case of a zero-dimensional
regular chain𝑇 , that 𝑓1, . . . , 𝑓𝑛 is a regular sequence at all points in V (𝑇) (of course, this assumption

, Vol. 1, No. 1, Article . Publication date: November 2021.

Computing Intersection Multiplicities with Regular Chains 15

is only required when no 𝑓𝑖 is a unit in any of the respective local rings). Testing for this constraint
is not practical for a standard basis free algorithm as it requires the use of primary decomposition
which relies on the computation of Gröbner bases. Moreover, this constraint is essential to the
proof of termination, hence we provide several heuristics for testing for non-regular sequences in
our implementation. The key observation behind the heuristics is that by applying propositions 3
and 4 from [8, Section 2], it suffices to test for a non-regular sequence in any branch of computation.
As the size of the branch decreases, which occurs during the splitting stage, testing for non-regular
sequences becomes easier. For example, branches of size 𝑛 = 1 will be a non-regular sequence only
when 𝑓𝑛 = 0. When 𝑛 = 2 it suffices to check gcd(𝑓1, 𝑓2)(𝑝) ̸= 0, as we did in Fulton’s algorithm.
Applying similar heuristics during the start of each recursive call allows our implementation of
the generalization of Fulton’s algorithm to catch many non-regular sequences and return an error
indicating the input was invalid.

5.5 Changes of Coordinates
The generalization of Fulton’s algorithm requires a variable ordering to be specified before runtime.
Although this ordering is needed for the algorithm, it is independent of the geometry of the input
system. Hence, the choice of a good or bad ordering can cause the algorithm to succeed or fail.
Since it is impractical to try all possible variable orderings, we leave the choice of variable ordering
up to the user. In our implementation, the variable ordering can be changed manually by the user
by modifying one or more of the required parameters. Additionally, the maxshift option equal to
𝑘 ∈ N will apply a circular left shift to the variable ordering upon detecting a failure, for up to 𝑘
failures.

5.6 Pivot Selection
The implementation of the generalization of Fulton’s algorithm, at both a point and regular chain,
also improves upon the pivot selection process from the procedure given in [8]. In line 11 of
algorithm 2 and line 20 of algorithm 3, the index𝑚 is defined as the index of the polynomial with
minimal modular degree with respect to some variable. Such an𝑚 can be thought of as the index
to a pivot element, as 𝑓𝑚 may be used to reduce the modular degrees of some polynomials within
the current iteration of the algorithm. It is possible however, for multiple polynomials to share the
same minimal modular degree with respect to some variable. Since the success of this procedure
is often dependent on the invertibility of a particular leading coefficient in the local ring, namely
that given on line 15 of algorithm 2 and line 24 of algorithm 3, having multiple viable choices for a
pivot element increases the algorithm’s chance of succeeding.
Consider the system 𝑥𝑦 − 𝑧, (𝑥 + 1)𝑦, 𝑥 ∈ K[𝑥,𝑦, 𝑧] at the origin. Both 𝑥𝑦 − 𝑧 and (𝑥 + 1)𝑦 have
modular degree 1 with respect to 𝑦. The leading coefficients of 𝑥𝑦 − 𝑧 and (𝑥 + 1)𝑦 modulo ⟨𝑧⟩ with
respect to 𝑦 are 𝑥 and 𝑥 + 1 respectively. The generalization of Fulton’s algorithm, as presented
in [8], would return Fail here as 𝑥 is not invertible in the local ring at the origin. But clearly this
need not be the case as 𝑥 + 1 is invertible in the local ring and (𝑥 + 1)𝑦 has minimal modular degree
with respect to 𝑦. Hence, extending the pivot selection process as to consider all polynomials with
minimal modular degree can further strengthen the generalization of Fulton’s algorithm and is
therefore, included in our implementation.

6 Benchmarking
In this section we benchmark the implementation of the generalization of Fulton’s algorithm
relative to the implementation of the algorithm of Vrbik et al. in𝑀𝑎𝑝𝑙𝑒 . All tests were run on an
Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz machine with two processors.

, Vol. 1, No. 1, Article . Publication date: November 2021.

16 Jürgen Gerhard, Marc Moreno Maza, and Ryan Sandford

The size column denotes the size of the square system, that is the number of variables and number
of polynomials in the system. The ordering column denotes the variable ordering given to the
generalization of Fulton’s algorithm. Point represents the point for which we wish to compute the
intersection multiplicity at and IM represents the intersection multiplicity at that point. Method 1
and Time 1 refer to the intersection multiplicity computed and CPU time elapsed from running
the generalization of Fulton’s algorithm. Similarly, Method 2 and Time 2 refer to the intersection
multiplicity computed and CPU time elapsed from running the algorithm of Vrbik et al.. Lastly, NA
denotes not available and NR denotes no response, which occurs if a command does not return a
result within a reasonable amount of time.
In table 1 we compare the two algorithms on systems chosen by the authors, at a regular chain
encoding the origin. Tests 1-8 consider the system 𝑥1, 𝑥

2
2, 𝑥3, . . . , 𝑥𝑛 for 𝑛 = 3, 5, 7, 9, 11, 13, 15, 25

respectively, which give us an idea of how both algorithms scale for larger input. In particular, we
see the generalization of Fulton’s algorithm often runs 1-2 orders of magnitude faster than the
algorithm of Vrbik et al., yielding a speed up of almost 14 minutes when 𝑛 = 25. Tests 9,10, and 11
consider the systems

𝑥𝑦 − 𝑧, 𝑥2𝑦3 − 𝑧, 𝑥4 − 𝑦,
𝑥3,−𝑥6 + 𝑦2, 𝑧4,

𝑧𝑦2, 𝑦5 − 𝑧2, 𝑥5 − 𝑦2,
respectively. The algorithm of Vrbik et al. either returns an error or does not return within a
reasonable amount of time on these examples. Conversely, the generalization of Fulton’s algorithm
can compute all of these examples. Also, worth noting, the system in test 11 contains polynomials
which are all singular at the origin. Since the algorithm of Vrbik et al. requires at least one polynomial
to be singular in order to apply the reduction criterion, it will always fail in such cases. Hence,
the generalization of Fulton’s algorithm becomes particularly attractive when all polynomials are
singular at the point of interest, as it relies on a different set of conditions to succeed, unrelated
to the geometry of the input. In tests 1-8 we noticed a dramatic difference in performance for a
relatively simple, but increasingly large, set of input systems. Test 12 illustrates that this difference
becomes even more pronounced when the polynomials themselves become more complex by
considering the system 𝑥21 + 𝑥2, 𝑥

2
2 + 𝑥3, 𝑥

2
3 + 𝑥

2
1, 𝑥

2
4 + 𝑥5, 𝑥

2
5 + 𝑥6, 𝑥

2
6 + 𝑥4. Here, we observe that the

generalization of Fulton’s algorithm runs in roughly the same time as test 3, the test with 7 variables,
whereas the algorithm of Vrbik et al. takes approximately 50 seconds longer than it did in test
3. This suggests that both the size of the polynomial system and complexity of the polynomials
themself, will cause a significant discrepancy in the performance of the two algorithms, making
the generalization of Fulton’s algorithm an attractive option for large or complex systems.

, Vol. 1, No. 1, Article . Publication date: November 2021.

Computing Intersection Multiplicities with Regular Chains 17

Table 1. IntersectionMultiplicity Using the Authors’ Tests

System Size Ordering Point IM Method 1 Time 1 Method 2 Time 2
test1 3 𝑥1 ≻ 𝑥2 ≻ . . . origin 2 2 16.00ms 2 344.00ms
test2 5 𝑥1 ≻ 𝑥2 ≻ . . . origin 2 2 31.00ms 2 2.98s
test3 7 𝑥1 ≻ 𝑥2 ≻ . . . origin 2 2 93.00ms 2 9.22s
test4 9 𝑥1 ≻ 𝑥2 ≻ . . . origin 2 2 187.00ms 2 22.97s
test5 11 𝑥1 ≻ 𝑥2 ≻ . . . origin 2 2 391.00ms 2 45.44s
test6 13 𝑥1 ≻ 𝑥2 ≻ . . . origin 2 2 640.00ms 2 80.86s
test7 15 𝑥1 ≻ 𝑥2 ≻ . . . origin 2 2 1.17s 2 2.20m
test8 25 𝑥1 ≻ 𝑥2 ≻ . . . origin 2 2 7.16s 2 13.83m
test9 3 𝑥 ≻ 𝑦 ≻ 𝑧 origin 5 5 31.00ms NR NA
test10 3 𝑥 ≻ 𝑦 ≻ 𝑧 origin 24 24 109.00ms ERROR 16.00ms
test11 3 𝑥 ≻ 𝑦 ≻ 𝑧 origin 45 45 63.00ms ERROR 15.00ms
test12 6 𝑥1 ≻ 𝑥2 ≻ . . . origin 2 2 109.00ms 2 59.38s

In table 2 we consider the systems described in [3] at regular chains encoding just a point. In the
cases where both algorithms succeed, we observe a speedup of 1-4 seconds. Moreover, in both
mth191 and DZ2 we see the generalization of Fulton’s algorithm is able to compute the intersection
multiplicity whereas the algorithm of Vrbik et al. cannot. Lastly, in Ojika4, we see an example
where the algorithm of Vrbik et al. succeeds and the generalization of Fulton’s algorithm does not,
which justifies the implementation of a hybrid algorithm, combining the two approaches. Although,
it is worth noting that upon selecting a better variable ordering, the generalization of Fulton’s
algorithm can compute the intersection multiplicity of all points in Ojika4.

Table 2. IntersectionMultiplicity Using Examples from the Literature [3]

System Size Ordering Point IM Method 1 Time 1 Method 2 Time 2
cbms1 3 𝑥 ≻ 𝑦 ≻ 𝑧 (0, 0, 0) 11 FAIL 16.00ms ERROR 16.00ms
cbms2 3 𝑥 ≻ 𝑦 ≻ 𝑧 (0, 0, 0) 8 FAIL 31.00ms ERROR 15.00ms
mth191 3 𝑥 ≻ 𝑦 ≻ 𝑧 (0, 1, 0) 4 4 63.00ms ERROR 1.42s
decker2 2 𝑥 ≻ 𝑦 (0, 0) 4 4 31.00ms 4 156.00ms
Ojika2 3 𝑥 ≻ 𝑦 ≻ 𝑧 (0, 0, 1) 2 2 47.00ms 2 1.58s
Ojika2 3 𝑥 ≻ 𝑦 ≻ 𝑧 (1, 0, 0) 2 2 47.00ms 2 1.56s
Ojika3 3 𝑥 ≻ 𝑦 ≻ 𝑧 (0, 0, 1) 4 4 47.00ms 4 2.24s
Ojika3 3 𝑥 ≻ 𝑦 ≻ 𝑧 (− 5

2 ,
5
2 , 1) 2 2 46.00ms 2 1.38s

Ojika4 3 𝑥 ≻ 𝑦 ≻ 𝑧 (0, 0, 1) 3 FAIL 16.00ms ERROR 672.00ms
Ojika4 3 𝑥 ≻ 𝑦 ≻ 𝑧 (0, 0, 10) 3 FAIL 16.00ms 3 2.39s
Ojika4 3 𝑥 ≻ 𝑧 ≻ 𝑦 (0, 0, 1) 3 3 47.00ms ERROR 2.44s
Ojika4 3 𝑥 ≻ 𝑧 ≻ 𝑦 (0, 0, 10) 3 3 79.00ms 3 4.18s
Caprasse 4 𝑥1 ≻ 𝑥2 ≻ . . . (2,−𝑖

√
3, 2, 𝑖
√
3) 4 FAIL 63.00ms NR NA

KSS 5 𝑥1 ≻ 𝑥2 ≻ . . . (1, 1, 1, 1, 1) 16 FAIL 47.00ms ERROR 50.56s
DZ1 4 𝑥1 ≻ 𝑥2 ≻ . . . (0, 0, 0, 0) 131 FAIL 16.00ms ERROR 16.00ms
DZ2 3 𝑥 ≻ 𝑧 ≻ 𝑦 (0, 0,−1) 16 16 94.00ms ERROR 16.00ms

As mentioned earlier our implementation of the generalization of Fulton’s algorithm can compute
the intersection multiplicity of a group of points encoded by a zero-dimensional regular chain. So far,

, Vol. 1, No. 1, Article . Publication date: November 2021.

18 Jürgen Gerhard, Marc Moreno Maza, and Ryan Sandford

we have only benchmarked examples where the regular chain encodes a single point. This is because
the implementation of the algorithm of Vrbik et al. does not provide sufficient support for regular
chains encoding a group of points and may throw an error or return an incorrect intersection multi-
plicity when this is the case. Instead, it is suggested to use the TriangularizeWithMultiplicity
command to compute the intersection multiplicity of a group of points.
The TriangularizeWithMultiplicity command first solves the system of polynomial equations
using Triangularize and then computes the intersection multiplicity of each of the solutions
using the algorithm of Vbrik et al.. In practice, this functionality is desirable when the solutions to
the system of polynomial equations are not known beforehand. In our implementation, we have
extended TriangularizeWithMultiplicity to use the generalization of Fulton’s algorithm, and
hence, we provide benchmarking for TriangularizeWithMultiplicity as well.
Since TriangularizeWithMultiplicity may return several regular chains and their correspond-
ing intersection multiplicities, we define two new columns, Success Ratio 1 and Success Ratio 2,
to be the number of intersection multiplicities successfully computed over the number of regular
chains returned, using the generalization of Fulton’s algorithm and the algorithm of Vrbik et al.
respectively. We also note that the implementation of the algorithm of Vrbik et al. returns an error
any time it cannot compute all intersection multiplicities, hence Success Ratio 2 will contain only
full fractions, errors, and NR.

Table 3. TriangularizeWithMultiplicity Using Examples from the Literature [3]

System Size Ordering Success Ratio 1 Time 1 Succeess Ratio 2 Time 2
cbms1 3 𝑥 ≻ 𝑦 ≻ 𝑧 10/11 656.00ms ERROR 219.00ms
cbms2 3 𝑥 ≻ 𝑦 ≻ 𝑧 1/2 12.05s ERROR 297.00ms
mth191 3 𝑥 ≻ 𝑦 ≻ 𝑧 8/8 547.00ms ERROR 1.33s
decker2 2 𝑥 ≻ 𝑦 3/3 46.00ms 3/3 181.00ms
Ojika2 3 𝑥 ≻ 𝑦 ≻ 𝑧 4/4 187.00ms 4/4 4.71s
Ojika3 3 𝑥 ≻ 𝑦 ≻ 𝑧 2/2 94.00ms 2/2 2.52s
Ojika4 3 𝑥 ≻ 𝑦 ≻ 𝑧 3/5 375.00ms ERROR 735.00ms
Ojika4 3 𝑥 ≻ 𝑧 ≻ 𝑦 5/5 422.00ms ERROR 2.70s
Caprasse 4 𝑥1 ≻ 𝑥2 ≻ . . . NR NA NR NA

KSS 5 𝑥1 ≻ 𝑥2 ≻ . . . 16/17 3.22s ERROR 54.05s
DZ1 4 𝑥1 ≻ 𝑥2 ≻ . . . NR NA ERROR 313.00ms
DZ2 3 𝑥 ≻ 𝑧 ≻ 𝑦 2/2 156.00ms ERROR 31.00ms

Once more, we note that the generalization of Fulton’s algorithm is able to compute the intersection
multiplicity at more points than the implementation of the algorithm of Vbrik et al.; in most cases
computing the intersection multiplicity at all, or almost all, solutions to the system of interest.
Moreover, for Ojika2, Ojika3, and Ojika4 (with a desirable variable ordering), the generalization of
Fulton’s algorithm computes the intersection multiplicities at all solutions seconds faster than the
algorithm of Vrbik et al..

References
[1] Parisa Alvandi, Marc Moreno Maza, Éric Schost, and Paul Vrbik. A standard basis free algorithm for computing the

tangent cones of a space curve. In Vladimir P. Gerdt, Wolfram Koepf, Werner M. Seiler, and Evgenii V. Vorozhtsov,
editors, Computer Algebra in Scientific Computing, pages 45–60, Cham, 2015. Springer International Publishing.

, Vol. 1, No. 1, Article . Publication date: November 2021.

Computing Intersection Multiplicities with Regular Chains 19

[2] C. Chen and M. Moreno Maza. Algorithms for computing triangular decomposition of polynomial systems. J. Symb.
Comput., 47(6):610–642, 2012.

[3] Barry H. Dayton and Zhonggang Zeng. Computing the multiplicity structure in solving polynomial systems. In Manuel
Kauers, editor, Symbolic and Algebraic Computation, International Symposium ISSAC 2005, Beijing, China, July 24-27,
2005, Proceedings, pages 116–123. ACM, 2005.

[4] Jean Della Dora, Claire Dicrescenzo, and Dominique Duval. About a new method for computing in algebraic number
fields. In B. F. Caviness, editor, EUROCAL ’85, European Conference on Computer Algebra, Linz, Austria, April 1-3, 1985,
Proceedings Volume 2: Research Contributions, volume 204 of Lecture Notes in Computer Science, pages 289–290. Springer,
1985.

[5] William Fulton. Algebraic curves - an introduction to algebraic geometry (reprint vrom 1969). Advanced book classics.
Addison-Wesley, 1989.

[6] Irving Kaplansky. Commutative rings. The University of Chicago Press, Chicago, Ill.-London, revised edition, 1974.
[7] Steffen Marcus, Marc Moreno Maza, and Paul Vrbik. On fulton’s algorithm for computing intersection multiplicities. In

Vladimir P. Gerdt, Wolfram Koepf, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors, Computer Algebra in Scientific
Computing - 14th International Workshop, CASC 2012, Maribor, Slovenia, September 3-6, 2012. Proceedings, volume 7442 of
Lecture Notes in Computer Science, pages 198–211. Springer, 2012.

[8] Marc Moreno Maza and Ryan Sandford. Towards extending fulton’s algorithm for computing intersection multiplicities
beyond the bivariate case. In François Boulier, Matthew England, Timur M. Sadykov, and Evgenii V. Vorozhtsov, editors,
Computer Algebra in Scientific Computing - 23rd International Workshop, CASC 2021, Sochi, Russia, September 13-17, 2021,
Proceedings, volume 12865 of Lecture Notes in Computer Science, pages 232–251. Springer, 2021.

[9] P. Vrbik. Computing Intersection Multiplicity via Triangular Decomposition. PhD thesis, The University of Western
Ontario, 2014.

, Vol. 1, No. 1, Article . Publication date: November 2021.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation and Basic Definitions
	2.2 Fulton's Algorithm
	2.3 The Generalization of Fulton's Algorithm

	3 Regular Chains
	3.1 Notations for polynomials
	3.2 Triangular set
	3.3 Regular chain
	3.4 Normalized regular chain
	3.5 Regular GCD
	3.6 The algorithm RegularGCD
	3.7 The algorithm Regularize
	3.8 Triangular decomposition
	3.9 Computing Intersection Multiplicities with Regular Chains

	4 Fulton's Algorithm and It's Generalization Using Regular Chains
	5 Implementation
	5.1 Overloading the IntersectionMultiplicity Command
	5.2 IntersectionMultiplicity at a Point
	5.3 IntersectionMultiplicity at a Regular Chain
	5.4 Non-Regular Sequences
	5.5 Changes of Coordinates
	5.6 Pivot Selection

	6 Benchmarking

