
Computing Intersection Multiplicities with Regular
Chains

Maple Conference 2021

Jürgen Gerhard 1, Marc Moreno Maza 2, and Ryan Sandford 2

1Maplesoft

2Department of Computer Science, The University of Western Ontario, Canada

October 12, 2021

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 1 / 25



Table of Contents

1 Introduction

2 Encoding Algebraic Points Using Regular Chains

3 Benchmarking

4 Summary

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 2 / 25



What Are Intersection Multiplicities

Intersection multiplicities generalize the notion of multiplicity of a
root for more than one polynomial.

When an algebraic set has a singular point, local approximation at
that point by a linear space is not possible.

When this occurs, tools like the tangent cone and intersection
multiplicity allow us to understand the behaviour of the algebraic set
at that singularity.

In a sense, intersection multiplicities tell us how complex a singularity
is.

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 3 / 25



Example

Figure: IM
(
(0, 0); y − x , x3 + xy 2 + x2 − y 2

)
= 3

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 4 / 25



Intersection Multiplicities and Local Rings

Let K be an algebraically closed field and let An denote affine n space
over K.

Definition (Local Ring)

Take p ∈ An, we define the local ring at p as

OAn,p :=

{
f

g
| f , g ∈ K[x1, . . . , xn] where g(p) 6= 0

}
.

Definition (Intersection Multiplicity)

Let f1, . . . fn ∈ K[x1, . . . , xn]. We define the intersection multiplicity of
f1, . . . , fn at p as the dimension of the local ring at p modulo the ideal
generated by f1, . . . , fn in the local ring at p, as a vector space over K.
That is,

IM(p; f1, . . . , fn) := dimK(OAn,p /〈f1, . . . , fn〉) .

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 5 / 25



Algorithms for Computing Intersection Multiplicities

In [4], Fulton presented an elegant algorithm for computing the
intersection multiplicity of two planar curves by applying a set of rules
to rewrite and simplify the input system.

The first algorithmic solution in the general setting was proposed by
Mora and is described in [3].

Mora’s solution is implemented in Singular and relies on the use of
standard bases.

Often, one may wish to avoid the use of standard bases. In which
case, algorithms which can effectively utilize Fulton’s approach in a
more general setting become desirable.

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 6 / 25



Standard Basis Free Algorithms for Computing Intersection
Multiplicities

Several standard basis free approaches were investigated in CASC
2012 and 2015 [5, 1, 7], which apply an algorithmic criterion based on
tangent cones to reduce to the bivariate case.

The IntersectionMultiplicity command, introduced in Maple 2020,
implemented this algorithm.

Unfortunately, the criterion discovered in [5, 1, 7] does not always
apply, and hence, the IntersectionMultiplicity command may fail.

Recently, in CASC 2021 [6], a new standard basis free approach was
investigated, where the authors present a partial algorithm extending
Fulton’s bivariate intersection multiplicity algorithm to the n-variate
setting.

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 7 / 25



Our Contribution

We implemented this new extended version of Fulton’s algorithm in
Maple in the IntersectionMultiplicity command, which now takes a
hybrid approach by applying both standard basis free algorithms.

Moreover, we further extended this algorithm to handle non-rational
coordinates and benchmarked this implementation relative to the
previous intersection multiplicity algorithm.

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 8 / 25



Fulton’s Properties

Theorem (Fulton’s Properties)

Let p = (p1, p2) ∈ A2(K) and f , g ∈ K[x , y ].

(2-1) IM(p; f , g) is a non-negative integer when V(f ) and V(g) have no
common component at p. When V(f ) and V(g) do have a
component in common at p, IM(p; f , g) =∞.

(2-2) IM(p; f , g) = 0 if and only if p 6∈ V(f , g).

(2-3) IM(p; f , g) is invariant under affine changes of coordinates on A2.

(2-4) IM(p; f , g) = IM(p; g , f ).

(2-5) IM(p; (x − p1)m1 , (y − p2)m2) = m1m2 for m1,m2 ∈ N.

(2-6) IM(p; f , gh) = IM(p; f , g) + IM(p; f , h) for any h ∈ K[x , y ] such

that IM(p; f , gh) ∈ N.

(2-7) IM(p; f , g) = IM(p; f , g + hf ) for any h ∈ K[x , y ].

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 9 / 25



Fulton’s Algorithm
Algorithm 1: Fulton’s algorithm

1 Function im2(f , g)
Input: Let: x � y

1 f , g ∈ K[x , y ] such that gcd(f , g)(0, 0) 6= 0.

Output: IM((0, 0); f , g)

2 if f (0, 0) 6= 0 or g(0, 0) 6= 0 then
3 return 0

4 r ← degx (f (x , 0))
5 s ← degx (g(x , 0))

6 if r > s then
7 return im2(g , f )

8 if r < 0 then /* y | f */

9 write g(x , 0) = xm(am + am+1x + . . .)
/* im2(f , g) = im2(quo(f , y ; y), g) + im2(y , g) */

10 return im2(quo(f , y ; y), g) + m

11 else
12 g ′ = lc(f (x , 0)) · g − (x)s−r lc(g(x , 0)) · f
13 return im2(f , g ′)

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 10 / 25



Table of Contents

1 Introduction

2 Encoding Algebraic Points Using Regular Chains

3 Benchmarking

4 Summary

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 11 / 25



Regular Chains

For a given polynomial system F with coefficients in a field K, the
coordinates of the points in its solution set, V(F ), may lie in a field
extension of K. Consider the system x2 = 2, y2 = x + 1 whose

solution set is
{

(
√

2,±
√√

2 + 1), (−
√

2,±
√
−
√

2 + 1)
}

.

Therefore, computing the intersection multiplicity of F at a point, p,
requires the manipulation field extensions of K.

In practice, these extensions do not always appear as fields but rather
as direct products of fields (DPFs). Regular chains (and their
implementation in the RegularChains library) encode such DPFs and
automatically split computations when needed, in particular when a
zero-divisor is encountered.

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 12 / 25



Fulton’s Algorithm and its Generalization, with
Non-Rational Points

In contrast, Fulton’s algorithm, and the generalization of Fulton’s
algorithm, assume that the point p is the origin. If p has rational
coordinates then one can easily reduce to the case where p is the
origin.

When p does not have rational coordinates, it is often not practical to
represent p by its coordinates. For example, consider any point p
which is a solution to x1000000 = 2, y2 = x + 1.

To avoid this, it is natural to encode p as a solution to a system of
polynomial equations, rather then as a tuple of algebraic numbers.

By encoding p as a solution to a zero-dimensional regular chain, we
can adapt Fulton’s algorithm and its generalization to work with any
point p of the zero set V(F ) of F .

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 13 / 25



Implementing the Generalization of Fulton’s Algorithm
Using Regular Chains

In our implementation of the generalization of Fulton’s algorithm, we
extended the algorithm presented in [6] to handle a zero-dimensional
regular chain as input rather than a point.

A zero-dimensional regular chain is a triangular system of equations
with algorithmic properties which encode a finite set of points.

Since zero-dimensional regular chains may encode many points with
different intersection multiplicities, the new version of the algorithm
may return multiple intersection multiplicities, and the points they
correspond to, encoded in zero-dimensional regular chains.

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 14 / 25



Table of Contents

1 Introduction

2 Encoding Algebraic Points Using Regular Chains

3 Benchmarking

4 Summary

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 15 / 25



Legend

Size denotes the size of the square input system. That is, the number
of variables/polynomials.

Ordering denotes the variable ordering in the regular chain encoding
the point. Choosing a good/bad ordering can affect the results of
both algorithms.

IM refers to the intersection multiplicity of the polynomial system at
the given point.

Method 1 and Time 1 refer to the intersection multiplicity computed
by our implementation of the generalization of Fulton’s algorithm and
the CPU time elapsed while running this algorithm.

Method 2 and Time 2 refer to the intersection multiplicity computed
by the existing intersection multiplicity algorithm and the CPU time
elapsed while running this algorithm.

NA stands for not available and NR stands for no response. NR
occurs when no result is returned within a reasonable amount of time.

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 16 / 25



Intersection Multiplicity Tests

Table: IntersectionMultiplicity Using the Authors’ Tests

System Size Ordering Point IM Method 1 Time 1 Method 2 Time 2

test1 3 x1 � x2 � . . . origin 2 2 16.00ms 2 344.00ms

test2 5 x1 � x2 � . . . origin 2 2 31.00ms 2 2.98s

test3 7 x1 � x2 � . . . origin 2 2 93.00ms 2 9.22s

test4 9 x1 � x2 � . . . origin 2 2 187.00ms 2 22.97s

test5 11 x1 � x2 � . . . origin 2 2 391.00ms 2 45.44s

test6 13 x1 � x2 � . . . origin 2 2 640.00ms 2 80.86s

test7 15 x1 � x2 � . . . origin 2 2 1.17s 2 2.20m

test8 25 x1 � x2 � . . . origin 2 2 7.16s 2 13.83m

test9 3 x � y � z origin 5 5 31.00ms NR NA

test10 3 x � y � z origin 24 24 109.00ms ERROR 16.00ms

test11 3 x � y � z origin 45 45 63.00ms ERROR 15.00ms

test12 6 x1 � x2 � . . . origin 2 2 109.00ms 2 59.38s

Tests 1-8 consider the polynomial system x1, x
2
2 , x3, . . . , xn for n = 3, 5, 7, 9, 11, 13, 15, 25

respectively.
Test 9 considers xy − z , x2y3 − z , x4 − y , test 10 uses x3,−x6 + y2, z4, and test 11 considers
zy2, y5 − z2, x5 − y2.
Test 12 considers x21 + x2, x

2
2 + x3, x

2
3 + x21 , x

2
4 + x5, x

2
5 + x6, x

2
6 + x4.

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 17 / 25



Intersection Multiplicity Tests from the Literature

Table: IntersectionMultiplicity Using Examples from the Literature [2]

System Size Ordering Point IM Method 1 Time 1 Method 2 Time 2

cbms1 3 x � y � z (0, 0, 0) 11 FAIL 16.00ms ERROR 16.00ms

cbms2 3 x � y � z (0, 0, 0) 8 FAIL 31.00ms ERROR 15.00ms

mth191 3 x � y � z (0, 1, 0) 4 4 63.00ms ERROR 1.42s

decker2 2 x � y (0, 0) 4 4 31.00ms 4 156.00ms

Ojika2 3 x � y � z (0, 0, 1) 2 2 47.00ms 2 1.58s

Ojika2 3 x � y � z (1, 0, 0) 2 2 47.00ms 2 1.56s

Ojika3 3 x � y � z (0, 0, 1) 4 4 47.00ms 4 2.24s

Ojika3 3 x � y � z (−5
2 ,

5
2 , 1) 2 2 46.00ms 2 1.38s

Ojika4 3 x � y � z (0, 0, 1) 3 FAIL 16.00ms ERROR 672.00ms

Ojika4 3 x � y � z (0, 0, 10) 3 FAIL 16.00ms 3 2.39s

Ojika4 3 x � z � y (0, 0, 1) 3 3 47.00ms ERROR 2.44s

Ojika4 3 x � z � y (0, 0, 10) 3 3 79.00ms 3 4.18s

Caprasse 4 x1 � x2 � . . . (2,−i
√

3, 2, i
√

3) 4 FAIL 63.00ms NR NA

KSS 5 x1 � x2 � . . . (1, 1, 1, 1, 1) 16 FAIL 47.00ms ERROR 50.56s

DZ1 4 x1 � x2 � . . . (0, 0, 0, 0) 131 FAIL 16.00ms ERROR 16.00ms

DZ2 3 x � z � y (0, 0,−1) 16 16 94.00ms ERROR 16.00ms

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 18 / 25



Triangularize With Multiplicity

The IntersectionMultiplicity command requires an argument which
specifies a solution or a subset of solutions to the polynomial system,
to compute the intersection multiplicity at.

The TriangularizeWithMultiplicity command computes the solutions
to the polynomial system in the form of zero-dimensional regular
chains and then calls IntersectionMultiplicity on each solution.

Since TriangularizeWithMultiplicity may return many regular
chains, we define Success Ratio to be the ratio of intersection
multiplicities successfully computed to the number of regular chains
returned, using method 1 and 2 respectively.

By nature of the implementation of method 2, an error is thrown if it
is unable to compute all intersection multiplicities, hence Success
Ratio 2 will always be a full fraction, an error, or NR.

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 19 / 25



Triangularize with Multiplicity Tests

Table: TriangularizeWithMultiplicity Using Examples from the Literature [2]

System Size Ordering Success Ratio 1 Time 1 Succeess Ratio 2 Time 2

cbms1 3 x � y � z 10/11 656.00ms ERROR 219.00ms

cbms2 3 x � y � z 1/2 12.05s ERROR 297.00ms

mth191 3 x � y � z 8/8 547.00ms ERROR 1.33s

decker2 2 x � y 3/3 46.00ms 3/3 181.00ms

Ojika2 3 x � y � z 4/4 187.00ms 4/4 4.71s

Ojika3 3 x � y � z 2/2 94.00ms 2/2 2.52s

Ojika4 3 x � y � z 3/5 375.00ms ERROR 735.00ms

Ojika4 3 x � z � y 5/5 422.00ms ERROR 2.70s

Caprasse 4 x1 � x2 � . . . NR NA NR NA

KSS 5 x1 � x2 � . . . 16/17 3.22s ERROR 54.05s

DZ1 4 x1 � x2 � . . . NR NA ERROR 313.00ms

DZ2 3 x � z � y 2/2 156.00ms ERROR 31.00ms

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 20 / 25



Table of Contents

1 Introduction

2 Encoding Algebraic Points Using Regular Chains

3 Benchmarking

4 Summary

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 21 / 25



Conclusion

We implemented generalized Fulton’s algorithm in Maple. Moreover,
we combined this with the previous standard basis free algorithm used
in the IntersectionMultiplicity command, to make a new, more
powerful, hybrid version of the IntersectionMultiplicity command.

We extended generalized Fulton’s algorithm to handle a
zero-dimensional regular chain as input rather than a point, allowing
it to work with algebraic coordinates in practice.

We provide benchmarking for the performance of generalized Fulton’s
algorithm relative to Maple′s previous intersection multiplicity
algorithm. The results suggest generalized Fulton’s algorithm is often
faster and can compute more examples.

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 22 / 25



References I

Parisa Alvandi, Marc Moreno Maza, Éric Schost, and Paul Vrbik.
A standard basis free algorithm for computing the tangent cones of a
space curve.
In Vladimir P. Gerdt, Wolfram Koepf, Werner M. Seiler, and
Evgenii V. Vorozhtsov, editors, Computer Algebra in Scientific
Computing, pages 45–60, Cham, 2015. Springer International
Publishing.

Barry H. Dayton and Zhonggang Zeng.
Computing the multiplicity structure in solving polynomial systems.
In Manuel Kauers, editor, Symbolic and Algebraic Computation,
International Symposium ISSAC 2005, Beijing, China, July 24-27,
2005, Proceedings, pages 116–123. ACM, 2005.

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 23 / 25



References II

Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans
Schönemann.
Singular 4-1-1 — A computer algebra system for polynomial
computations.
http://www.singular.uni-kl.de, 2018.

William Fulton.
Algebraic curves - an introduction to algebraic geometry (reprint vrom
1969).
Advanced book classics. Addison-Wesley, 1989.

Steffen Marcus, Marc Moreno Maza, and Paul Vrbik.
On fulton’s algorithm for computing intersection multiplicities.
In Vladimir P. Gerdt, Wolfram Koepf, Ernst W. Mayr, and Evgenii V.
Vorozhtsov, editors, Computer Algebra in Scientific Computing - 14th
International Workshop, CASC 2012, Maribor, Slovenia, September

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 24 / 25

http://www.singular.uni-kl.de


References III

3-6, 2012. Proceedings, volume 7442 of Lecture Notes in Computer
Science, pages 198–211. Springer, 2012.

Marc Moreno Maza and Ryan Sandford.
Towards extending fulton’s algorithm for computing intersection
multiplicities beyond the bivariate case.
In François Boulier, Matthew England, Timur M. Sadykov, and
Evgenii V. Vorozhtsov, editors, Computer Algebra in Scientific
Computing - 23rd International Workshop, CASC 2021, Sochi, Russia,
September 13-17, 2021, Proceedings, volume 12865 of Lecture Notes
in Computer Science, pages 232–251. Springer, 2021.

P. Vrbik.
Computing Intersection Multiplicity via Triangular Decomposition.
PhD thesis, The University of Western Ontario, 2014.

J. Gerhard, M. Moreno Maza, R. Sandford Computing Intersection Multiplicities October 12, 2021 25 / 25


	Introduction
	Encoding Algebraic Points Using Regular Chains
	Benchmarking
	Summary
	References

