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Overview

We analyze the Generalization of Fulton’s In-
tersection Multiplicity Algorithm, a symbolic

partial algorithm for computing intersection
multiplicities via recursive algebraic rewriting.
We show the algorithm exhibits non-elementary
worst-case complexity on dense systems and ex-
ponential complexity in favorable cases. Finally,
we propose an optimization that reduces the
depth of recursion across branches of computa-
tion, limiting the growth responsible for non-
elementary complexity.

Introduction and Notation

The Generalization of Fulton’s Intersection Mul-
tiplicity Algorithm (GFIMA) [1, 2] is a symbolic
partial algorithm which computes intersection mul-
tiplicities by recursively applying algebraic rewrite
rules to systems of polynomial equations. GFIMA,
along with its extension based on regular chains
3|, are implemented in the REGULAR CHAINS
LIBRARY (4| distributed with MAPLE.

Let K be a field and let A"™ denote the
affine space of dimension n over K.  Take
fi,ooos fu € Klxy,...,z,] and fix p € A"
The intersection multiplicity of f1,..., f, at p,
written IM(p; f1,..., fn), is the dimension of
Oary /(f1,-.-, [n) as a K vector space, where
Oan,p is the localization of the polynomial ring

at p. We define the degree of the zero polyno-
mial to be —oo with respect to any variable. Fix
an ordering z; > ... > x,. We write f! :=
f(x1,..., % Pis1, - - -, Pn) to denote the specializa-
tion of f at p in the last n — ¢ variables, and
p'Y = (p1,...,pi) to denote truncation to the first
1 coordinates. We assume specializations are com-
puted in reverse order and intermediate values are
cached unless invalidated by structural changes to
f. We define the elimination degree of f at an in-
dex i, written elimdeg( f, ), to be deg(f%: ;). Let
®l¥ denote the k-fold composition of the function
®. The valuation of f at x; — p; is defined as the
largest m such that f =0 mod (x; — p;)™
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Proposition 1

If f1,..., fn € K[Q?l,.

.., Tp] with maximum degree d, n > 2, and p € A", the worst-case time complexity

of Algorithm 1 is O(n2 (q)[dn](d))n) where @ : d s 2033 =2d=1(4q — 1) — Z?j J=1gdtd=1) _ 1,

Proposition 2

Take f1, ..

o fn €Kz, ..., 2] and p € A" If for each 7, elimdeg( f,,—i+1,7) > 0 and elimdeg( f;,7) < 0

for any 7 <n — i+ 1, then (z; — p;)" divides féﬁiﬂ where v; is its valuation at z; — p;. If q,,—;+1 is the
corresponding quotient of each division, we have:
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Algorithm 1 The Generalization of Fulton's Inter-
section Multiplicity Algorithm

Input: Variable order 1~ ... >x,; pointp = (p1,...,pn) €
A"; polynomials f1,...,f, € Klzy,...,x,| such that
V(fi,..., fn) is zero-dimensional at p.

Output: IM(p; fi,..., fn) or FAIL
1: function gfima(p; f1,..., f,)

2: if fi(p)#0foranyt=1,...,n then

3: return 0

4 if n =1 then

5: return max{m > 0 | f, = 0 mod (x1 — p1)"}

6: fory=1,....n—1do > Rewrite Loop
7 while TRUE do

8: fori=1,....n—j7+1do

9: r; <— elimdeg(f;, 7)

10: Sort fi,..., fun—jrisothat ry < ... <, iy
11: if Tn—j < 0 then

12: break

13: m < min{k | rp > 0}

14 fori=m+1,....n—j7+1do

15: Ly, < le(fU); x))

16: L; + 1C( z'(]); ZEj)

17: L < lem(L;, Ly,

18: if 7(p) =0 then

19: return FAIL
20: Ji 4 Lsz (zj — Pj)”_f'amL—ilfm
21 for:=1,...,ndo > Recursive Split
22: qi < ;}uo(fi(n_wrl)a Ln—i+1 — Pn—i+l; xn—i—H)
23: return Z ofima (p(k); qff_)kﬂ, ff,(f_)kw, el fék))

k=1

Worst Case Time Complexity

For dense f1,..., f, withn > 2. the time complex-
ity of the GFIMA is non-elementary in the worst
case. Due to the expression swell experienced by
the input system during the rewriting process, op-
erations performed against the final system of poly-
nomials dominate the cost of the algorithm.

Let d be the maximum degree of fi,..., f,. Bach
iteration of the Rewrite Loop can increase the de-
eree. The first iteration can increase the degree to
at most 2d — 1. Subsequent iterations increase the
degree by at most h : § — 397120 + 1) — 1. Each
completion of the Rewrite Loop therefore increases
the degree by at most

O(d) = h"A(2d — 1)
— 2%—33(71—2) (d—l) (4d_ 1)

n—3 .

— Y pilgild=l g,
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Since the sum of the heights of each branch in the

recursion tree with positive multiplicity is at most
d" and each Recursive Split strictly decreases the re-
maining multiplicity 2], the worst case occurs when
d" — 1 recursive calls which return positive multi-
plicity are made to GFIMA on systems of size n.
In this case the degree of the final rewritten system
will be at most ®l%")(d)
reduces to the cost of computing O(n) specializa-
tions in n — 1 variables in the final step. Propo-
sition 1 gives the final cost of Algorithm 1 in
the worst case.

and the total complexity

)

Efficient Splitting Optimization

Because the overall cost exhibits non-elementary
orowth, any optimization that limits the num-
ber of Recursive Split steps can significantly im-
prove average-case performance. Proposition 2
achieves this by refining the standard decomposi-

tion: rather than decreasing the remaining mul-
tiplicity by the sum of sub-multiplicities, it de-
composes the remaining multiplicity into a sum of
sub-multiplicities weighted by products of valua-
tions. This more aggressive reduction decreases
the depth of the recursion tree, hence collaps-
ing the nested compositions responsible for non-
elementary growth.

Best Case Time Complexity

In the best case, the input system does not require
rewriting, reducing the cost of GFIMA to the cost
of computing O(n) specializations in n — 1 vari-
ables. This yields a time complexity of Q(n*d") if
only a single invocation is required, or Q(n*d*?) if
up to d" Recursive Split steps are still performed.

Proposition 3

Let fi,...,fn € Klx1,...,2,| be polynomi-
als of degree at most d, where n > 1 and

p € V(fi,..., fn). Then the best-case time
complexity of Algorithm 1 is Q(nd").
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