
Complexity Bounds for the Generalization of

Fulton’s Intersection Multiplicity Algorithm
Ryan Sandford

Independent Researcher

Overview

We analyze the Generalization of Fulton’s In-
tersection Multiplicity Algorithm, a symbolic
partial algorithm for computing intersection
multiplicities via recursive algebraic rewriting.
We show the algorithm exhibits non-elementary
worst-case complexity on dense systems and ex-
ponential complexity in favorable cases. Finally,
we propose an optimization that reduces the
depth of recursion across branches of computa-
tion, limiting the growth responsible for non-
elementary complexity.

Introduction and Notation

The Generalization of Fulton’s Intersection Mul-
tiplicity Algorithm (GFIMA) [1, 2] is a symbolic
partial algorithm which computes intersection mul-
tiplicities by recursively applying algebraic rewrite
rules to systems of polynomial equations. GFIMA,
along with its extension based on regular chains
[3], are implemented in the Regular Chains

Library [4] distributed with Maple.
Let K be a field and let A

n denote the
affine space of dimension n over K. Take
f1, . . . , fn ∈ K[x1, . . . , xn] and fix p ∈ A

n.
The intersection multiplicity of f1, . . . , fn at p,
written IM(p; f1, . . . , fn), is the dimension of
OAn,p /〈f1, . . . , fn〉 as a K vector space, where
OAn,p is the localization of the polynomial ring
at p. We define the degree of the zero polyno-
mial to be −∞ with respect to any variable. Fix
an ordering x1 ≻ . . . ≻ xn. We write f (i) :=
f(x1, . . . , xi, pi+1, . . . , pn) to denote the specializa-
tion of f at p in the last n − i variables, and
p(i) := (p1, . . . , pi) to denote truncation to the first
i coordinates. We assume specializations are com-
puted in reverse order and intermediate values are
cached unless invalidated by structural changes to
f . We define the elimination degree of f at an in-
dex i, written elimdeg(f, i), to be deg(f (i); xi). Let
Φ[k] denote the k-fold composition of the function
Φ. The valuation of f at xi − pi is defined as the
largest m such that f ≡ 0 mod (xi − pi)

m.

Proposition 1

If f1, . . . , fn ∈ K[x1, . . . , xn] with maximum degree d, n > 2, and p ∈ A
n, the worst-case time complexity

of Algorithm 1 is O
(

n2
(

Φ[dn](d)
)n)

where Φ : d 7→ 2n−33(n−2)(d−1)(4d− 1)−
∑n−3

j=1 2j−13 j(d−1) − 1.

Proposition 2

Take f1, . . . , fn ∈ K[x1, . . . , xn] and p ∈ A
n. If for each i, elimdeg(fn−i+1, i) > 0 and elimdeg(fj, i) < 0

for any j < n− i + 1, then (xi− pi)
vi divides f

(i)
n−i+1 where vi is its valuation at xi− pi. If qn−i+1 is the

corresponding quotient of each division, we have:

IM(p; f1, . . . , fn) =
n
∑

i=1







(n
∏

j=i+1
vj

)

· IM(p(i); q
(i)
n−i+1, f

(i)
n−i+2, . . . , f (i)

n)





.

Algorithm 1 The Generalization of Fulton’s Inter-

section Multiplicity Algorithm

Input: Variable order x1≻ . . . ≻xn; point p = (p1, . . . , pn) ∈
A

n; polynomials f1, . . . , fn ∈ K[x1, . . . , xn] such that

V(f1, . . . , fn) is zero-dimensional at p.

Output: IM(p; f1, . . . , fn) or Fail

1: function gfima(p; f1, . . . , fn)
2: if fi(p) 6= 0 for any i = 1, . . . , n then

3: return 0

4: if n = 1 then

5: return max{m > 0 | fn ≡ 0 mod (x1− p1)
m}

6: for j = 1, . . . , n− 1 do ⊲ Rewrite Loop

7: while true do

8: for i = 1, . . . , n− j + 1 do

9: ri← elimdeg(fi, j)

10: Sort f1, . . . , fn−j+1 so that r1 ≤ . . . ≤ rn−j+1

11: if rn−j < 0 then

12: break

13: m← min{k | rk > 0}
14: for i = m + 1, . . . , n− j + 1 do

15: Lm← lc(f (j)
m ; xj)

16: Li← lc(f
(j)
i ; xj)

17: L← lcm(Li, Lm)
18: if L

Li
(p) = 0 then

19: return Fail

20: fi←
L
Li

fi − (xj − pj)
ri−rm L

Lm
fm

21: for i = 1, . . . , n do ⊲ Recursive Split

22: qi← quo(f
(n−i+1)
i , xn−i+1 − pn−i+1; xn−i+1)

23: return
n
∑

k=1

gfima
(

p(k); q
(k)
n−k+1, f

(k)
n−k+2, . . . , f (k)

n

)

Worst Case Time Complexity

For dense f1, . . . , fn with n > 2, the time complex-
ity of the GFIMA is non-elementary in the worst
case. Due to the expression swell experienced by
the input system during the rewriting process, op-
erations performed against the final system of poly-
nomials dominate the cost of the algorithm.
Let d be the maximum degree of f1, . . . , fn. Each
iteration of the Rewrite Loop can increase the de-
gree. The first iteration can increase the degree to
at most 2d− 1. Subsequent iterations increase the
degree by at most h : δ 7→ 3d−1(2δ + 1)− 1. Each
completion of the Rewrite Loop therefore increases
the degree by at most

Φ(d) := h[n−2](2d− 1)

= 2n−33(n−2)(d−1)(4d−1)−
n−3
∑

j=1
2j−13j(d−1)−1.

Since the sum of the heights of each branch in the
recursion tree with positive multiplicity is at most
dn and each Recursive Split strictly decreases the re-
maining multiplicity [2], the worst case occurs when
dn − 1 recursive calls which return positive multi-
plicity are made to GFIMA on systems of size n.
In this case the degree of the final rewritten system
will be at most Φ[dn](d), and the total complexity
reduces to the cost of computing O(n) specializa-
tions in n− 1 variables in the final step. Propo-

sition 1 gives the final cost of Algorithm 1 in
the worst case.

Efficient Splitting Optimization

Because the overall cost exhibits non-elementary
growth, any optimization that limits the num-
ber of Recursive Split steps can significantly im-
prove average-case performance. Proposition 2

achieves this by refining the standard decomposi-
tion: rather than decreasing the remaining mul-
tiplicity by the sum of sub-multiplicities, it de-
composes the remaining multiplicity into a sum of
sub-multiplicities weighted by products of valua-
tions. This more aggressive reduction decreases
the depth of the recursion tree, hence collaps-
ing the nested compositions responsible for non-
elementary growth.

Best Case Time Complexity

In the best case, the input system does not require
rewriting, reducing the cost of GFIMA to the cost
of computing O(n) specializations in n − 1 vari-
ables. This yields a time complexity of Ω(n2dn) if
only a single invocation is required, or Ω(n2d2n) if
up to dn Recursive Split steps are still performed.

Proposition 3

Let f1, . . . , fn ∈ K[x1, . . . , xn] be polynomi-
als of degree at most d, where n > 1 and
p ∈ V(f1, . . . , fn). Then the best-case time
complexity of Algorithm 1 is Ω(n2dn).

References

[1] W. Fulton, Algebraic Curves: An Introduction to Algebraic

Geometry, Addison–Wesley, 1989.

[2] M. Moreno Maza and R. Sandford, “Towards Extending Fulton’s
Algorithm for Computing Intersection Multiplicities Beyond the
Bivariate Case,” in CASC 2021, LNCS 12865, Springer, 2021, pp.
232–251. https://doi.org/10.1007/978-3-030-85165-1_14

[3] R. Sandford, J. Gerhard, and M. Moreno Maza, “Computing
Intersection Multiplicities with Regular Chains,” Maple Trans., vol.
2, no. 1, 2022. https://doi.org/10.5206/mt.v2i1.14463

[4] F. Lemaire, M. Moreno Maza, and Y. Xie, “The RegularChains
Library in Maple,” ACM SIGSAM Bull., vol. 39, no. 3, pp. 96–97,
2005. https://doi.org/10.1145/1113439.1113456

https://doi.org/10.1007/978-3-030-85165-1_14
https://doi.org/10.5206/mt.v2i1.14463
https://doi.org/10.1145/1113439.1113456

