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1 Preface

This is the author’s modified version of “Towards Extending Fulton’s Algorithm
for Computing Intersection Multiplicities Beyond the Bivariate Case”, published
in the proceedings of the CASC 2021 conference [8] and differs by only a few
minor changes.
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2 Introduction

The study of singularities in algebraic sets is one of the driving application areas
of computer algebra and has motivated the development of numerous algorithms
and software, see the books [2,4] for an overview. One important question in that
area is the computation of intersection multiplicities. The first algorithmic so-
lution was proposed by Mora, for which a modern presentation is given in [4].
Mora’s approach relies on the computation of standard bases. An alternative ap-
proach has been investigated in the 2012 and 2015 CASC papers [1,6], following
an observation made by Fulton in [3, Section 3-3] where he exhibits an algorithm
for computing the intersection multiplicity of two plane curves.

Fulton’s algorithm is based on 7 properties (see section 3.4 of the present
paper) which uniquely define the intersection multiplicity of two plane curves at
the origin, and yield a procedure for computing it, see algorithm 1. If the input
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is a pair (f0, g0) of bivariate polynomials over some algebraically closed field K,
then Fulton’s 7 properties acts as a set of rewrite rules replacing (f0, g0), by
a sequence of pairs (f1, g1), (f2, g2), . . . of bivariate polynomials over K, which
preserves the intersection multiplicity at the origin. This process may split the
computation and terminates in each branch once reaching a pair for which the
intersection multiplicity at the origin can be determined. This is an elegant pro-
cess, which, experimentally, outperforms Mora’s algorithm, as reported in [10].

Extending Fulton’s algorithm to a general setting was discussed but not
solved in [1, 6]. Given n polynomials f1, . . . , fn ∈ K[x1, . . . , xn] generating a
zero-dimensional ideal, and a point p ∈ V(f1, . . . , fn), the authors of [1, 6] pro-
pose an algorithmic criterion for reducing the intersection multiplicity of p in
V(f1, . . . , fn), to computing another intersection multiplicity with n − 1 poly-
nomials in n − 1 variables. For this criterion to be applicable, a transversality
condition must hold. Unfortunately, this assumption is not generically true.

The present paper makes three contributions towards the goal of extending
Fulton’s algorithm to the general, multivariate case.

1. In section 4, we propose and prove an adaptation of Fulton’s algorithm to
handle polynomials in three variables. For f, g, h ∈ K[x, y, z] which form a
regular sequence in the local ring at p ∈ A3, the proposed algorithm either
returns the intersection multiplicity of p in V(f, g, h), or returns “Fail”. We
show that this algorithm can cover cases which were out of reach of the
algorithmic criterion [1, 6].

2. In section 5, we extend the algorithm proposed in section 4 to the general
setting of n-polynomials in n variables, where n ≥ 2.

3. In section 6, we prove that if n polynomials f1, . . . , fn ∈ K[x1, . . . , xn] form
both a triangular set and a regular sequence in the local ring at p ∈ An, then
the intersection multiplicity of p in V(f1, . . . , fn) can be obtained immedi-
ately by evaluating f1, . . . , fn.

The result of section 6 has two important consequences. First, it provides an op-
timization for Fulton’s algorithm as well as for the algorithms of sections 4 and
5: indeed, when these algorithms are applied to a triangular regular sequence,
they immediately return the intersection multiplicity at p of such input system.
Second, this result suggests a new direction towards the goal of extending Ful-
ton’s algorithm: develop an algorithm which would decide whether an arbitrary
regular sequence f1, . . . , fn (in the local ring at p) can be transformed into a
triangular regular sequence.

Lastly, the present paper considers only the theoretical aspects of extending
Fulton’s algorithm. The current implementation, and other interesting topics
such as optimizations, relative performance, and complexity analysis, will be
discussed in a future paper.
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3 Preliminaries

3.1 Notation

Let K be an algebraically closed field. Let An denote An(K), the affine space of
dimension n over K. Assume variables x1, . . . , xn are ordered x1 � . . . � xn. We
define the degree of the zero polynomial to be −∞ with respect to any variable.

If I is an ideal of K[x1, . . . , xn], we denote by V(I) the algebraic set (aka
variety) consisting of the common zeros to all polynomials in I. An algebraic set
V is irreducible, whenever V = V1 ∪V2 for some algebraic sets V1,V2, implies
V = V1 or V = V2. The ideal of an algebraic set V, denoted by I(V), is the set
of all polynomials which vanish on all points in V. For f1, . . . , fn ∈ K[x1, . . . , xn],
we say V(f1) , . . . ,V(fn) have a common component which passes through p ∈
An if when we write V(f1, . . . , fn) as a union of its irreducible components,
say V1 ∪ . . . ∪Vm, there is a Vi which contains p. Similarly, we say f1, . . . , fn
have a common component through p when V(f1) , . . . ,V(fn) have a common
component which passes through p. We say an algebraic set is zero-dimensional
if it contains only finitely many points in An.

3.2 Local Rings and Intersection Multiplicity

Definition 1. Let V be an irreducible algebraic set with p ∈ V. We define the
local ring of V at p as

OV,p :=

{
f

g
| f, g ∈ K[x1, . . . , xn]/I(V) where g(p) 6= 0

}
.

Often, we will refer to the local ring of An at p, in which case we will simply
say the local ring at p and write

OAn,p :=

{
f

g
| f, g ∈ K[x1, . . . , xn] where g(p) 6= 0

}
.

Local rings have a unique maximal ideal. In the case of OAn,p all elements
which vanish on p are in the maximal ideal and all of those that do not are units.
Hence, given an element f ∈ K[x1, . . . , xn] we can test whether f is invertible in
OAn,p by testing f(p) 6= 0.

Definition 2. Let f1, . . . , fn ∈ K[x1, . . . , xn]. We define the intersection mul-
tiplicity of f1, . . . , fn at p ∈ An as the dimension of the local ring at p modulo
the ideal generated by f1, . . . , fn in the local ring at p, as a vector space over K.
That is,

Im(p; f1, . . . , fn) := dimK(OAn,p /〈f1, . . . , fn〉) .

The following observation allows us to write the intersection multiplicity of
a system of polynomials as the intersection multiplicity of a smaller system of
polynomials, in fewer variables, when applicable. It follows from an isomorphism
between the respective residues of local rings in the definition of intersection
multiplicity.
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Remark 1. Let f1, . . . fn ∈ K[x1, . . . , xn] and p = (p1, . . . , pn) ∈ An. If there are
some fi such that fi = xi − pi, say fm, . . . , fn where 1 < m ≤ n, then

Im(p; f1, . . . , fn) = Im((p1, . . . , pm−1); F1, . . . , Fm−1) ,

where Fj is the image of fj modulo 〈xm − pm, . . . , xn − pn〉.

3.3 Regular Sequences

Regular sequences are one of the primary tools leveraged in our approach to com-
pute intersection multiplicities. Given a regular sequence, corollary 1, along side
propositions 3 and 4, describe a set of permissible modifications which maintain
regularity.

Later we will encounter a property of intersection multiplicities which re-
quires the input polynomials form a regular sequence. Hence, our approach will
be to start with a regular sequence, perform a set of operations on the input sys-
tem which are permissible as to maintain being a regular sequence, and compute
the intersection multiplicity.

Proposition 1 can be found in [5, Section 3-1] and proposition 2 in [7, Sec-
tion 6-15]. We believe propositions 3, 4, and 5 can also be found in the literature
but include proofs for completeness, as we refer to these propositions frequently
in later sections.

Definition 3. Let R be a commutative ring and M an R module. Let r1, . . . , rd
be a sequence of elements in R. Then r1, . . . , rd is an M -regular sequence if
ri is not a zero divisor on M/〈r1, . . . , ri−1〉M for all i = 1, . . . , d and M 6=
〈r1, . . . , rd〉M .

When R,M = OAn,p, we will often refer to a M -regular sequence as a regular
sequence in OAn,p or simply as a regular sequence.

Proposition 1. Let r1, . . . , rd form a regular sequence in a Noetherian local
ring R, and suppose all ri are in the maximal ideal, then any permutation of
r1, . . . , rd is a regular sequence in R.

Corollary 1. Let f1, . . . , fn ∈ K[x1, . . . , xn] where f1, . . . , fn vanish on some
p ∈ An and form a regular sequence in OAn,p. Then any permutation of f1, . . . , fn
is a regular sequence in OAn,p.

Proof: Since f1, . . . , fn vanish at p they are in the maximal ideal of OAn,p. The
conclusion follows from proposition 1. 2

With corollary 1, we can now give a more intuitive explanation of regular
sequences in the local ring at p. Regular sequences in the local ring at p can
be thought of as systems which behave nicely at p. That is, if f1, . . . , fn ∈
K[x1, . . . , xn] is a regular sequence in the local ring at p, no fi is zero, a zero-
divisor, or a unit modulo any subset of the remaining polynomials. Moreover, we
can say there is no pair fi, fj where i 6= j, modulo any subset of the remaining
polynomials, which has a common component through p.
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Proposition 2. If f1, . . . , fn ∈ K[x1, . . . , xn] is a regular sequence in OAn,p

then the irreducible component of V(f1, . . . , fn) which passes through p is zero-
dimensional.

We may assume V(f1, . . . , fn) is equal to its component which contains p
since the other components do not affect the intersection multiplicity.

Proposition 3. Let f1, . . . , fn ∈ K[x1, . . . , xn] where f1, . . . , fn vanish on
some p ∈ An. Fix some g ∈ {f1, . . . , fn} and choose some subset I ⊆
{i ∈ N | 1 ≤ i ≤ n, fi 6= g}. For each i = 1, . . . , n, define

F I
i =

{
fi if i 6∈ I
sifi − rig if i ∈ I

where si, ri are in K[x1 . . . , xn] and each si is invertible in OAn,p.
Then f1, . . . , fn forms a regular sequence in OAn,p if and only if F I

1 , . . . , F
I
n

forms a regular sequence in OAn,p.

Proof: By corollary 1, f1, . . . , fn is a regular sequence under permutation, thus
we may reorder so that all polynomials with indices in I are at the end of the
sequence. That is, we may assume I = {i ∈ N | N < i ≤ n} for some N ∈ N.
Moreover, we may reorder so that g = fN .

It suffices to show F I
k is regular modulo 〈F I

1 , . . . , F
I
k−1〉 for each k such that

N < k ≤ n. First observe,

〈F I
1 , . . . , F

I
k 〉 = 〈f1, . . . , fN , sN+1fN+1 − rN+1fN , . . . , skfk − rkfN 〉

= 〈f1, . . . , fN , sN+1fN+1, . . . , skfk〉
= 〈f1, . . . , fk〉.

Hence, we will show F I
k is regular modulo 〈f1, . . . , fk−1〉. Suppose it was not,

thus there are q, a1, . . . , ak−1 in OAn,p where q 6∈ 〈f1, . . . , fk−1〉 such that,

qF I
k = a1f1 + . . .+ ak−1fk−1

qskfk − qrkfN = a1f1 + . . .+ ak−1fk−1

qfk = s−1k (a1f1 + . . .+ (qrk + aN )fN + . . .+ ak−1fk−1).

Since q 6∈ 〈f1, . . . , fk−1〉, this contradicts the regularity of fk modulo 〈f1, . . . , fk−1〉.
The converse follows by the same argument. 2

Let 〈f1, . . . , f̂r, . . . , fn〉 denote the ideal generated in the local ring by f1, . . . , fn
with fr ommited.

Proposition 4. Let f1, . . . , fn ∈ K[x1, . . . , xn] where f1, . . . , fn vanish on some
p ∈ An. Suppose for some k we have fk = q1q2 for some q1, q2 ∈ K[x1, . . . , xn]
which are not units in OAn,p. Then f1, . . . , fn is a regular sequence in OAn,p if
and only if both f1, . . . , q1, . . . , fn and f1, . . . , q2, . . . , fn are regular sequences in
OAn,p.
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Proof:
Suppose f1, . . . , fn is not a regular sequence. We may assume neither q1, q2 ∈

〈f1, . . . , f̂k, . . . , fn〉 since otherwise the claim clearly holds. Since f1, . . . , fn is
not a regular sequence there exists coefficients Q1, . . . , Qn and an index r such
that

n∑
i=1

Qifi = 0,

and Qr 6∈ 〈f1, . . . , f̂r, . . . , fn〉.
If r = k write

Q1f1 + . . .+Qkq1q2 + . . .+Qnfn = 0,

and Qk 6∈ 〈f1, . . . , f̂k, . . . , fn〉. If Qkq1 6∈ 〈f1, . . . , f̂k, . . . , fn〉 then q2 is a zero

divisor since the image of q2 is not zero modulo 〈f1, . . . , f̂k, . . . , fn〉. If Qkq1 ∈
〈f1, . . . , f̂k, . . . , fn〉 then q1 is a zero divisor since the image of Qk and q1 modulo

〈f1, . . . , f̂k, . . . , fn〉 are not zero. Hence, one of f1, . . . , q1, . . . , fn or f1, . . . , q2, . . . , fn
is not a regular sequence.

Suppose r 6= k. Since Qr 6∈ 〈f1, . . . , fk, . . . , f̂r, . . . , fn〉, Qr can not be in both

〈f1, . . . , q1, . . . , f̂r, . . . , fn〉 and 〈f1, . . . , q2, . . . , f̂r, . . . , fn〉. SayQr 6∈ 〈f1, . . . , q1, . . . , f̂r, . . . , fn〉.
Defining Q′i = Qi for all i 6= k and Q′k = Qkq2 gives

Q′1f1 + . . .+Q′kq1 + . . .+Q′nfn = 0,

and Q′r 6∈ 〈f1, . . . , q1, . . . , f̂r, . . . , fn〉, and hence f1, . . . , q1, . . . , fn is not a regular
sequence.

Conversely, suppose one of f1, . . . , q1, . . . , fn or f1, . . . , q2, . . . , fn is not a
regular sequence, say f1, . . . , q1, . . . , fn. Then there are Q1, . . . , Qn ∈ OAn,p such
that, Q1f1 + . . .+Qkq1 + . . .+Qnfn = 0

Consider Qk, if Qk 6∈ 〈f1, . . . , q̂1, . . . , fn〉, then multiplying by q2 gives us
q2Q1f1 + . . . + Qk(q1q2) + . . . + q2Qnfn = 0 and hence q2Q1f1 + . . . + Qkfk +
. . .+ q2Qnfn = 0. Defining Q′i = Qiq2 for all i 6= k and Q′k = Qk gives us

n∑
i=1

Q′ifi = 0,

and Qk 6∈ 〈f1, . . . , f̂k, . . . , fn〉, hence f1, . . . , fn is not a regular sequence.
If Qk ∈ 〈f1, . . . , q̂1, . . . , fn〉 then we can write Q′1f1+. . .+0q1+. . .+Q′nfn = 0

for some Q′1, . . . , Q
′
n ∈ OAn,p. Since f1, . . . , q1, . . . , fn is not a regular sequence,

there must be some index r such that Q′r 6∈ 〈F1, . . . , F̂r, . . . , Fn〉 where Fi = fi
for all i 6= k and Fk = q1. Hence Q′r 6∈ 〈f1, . . . , f̂r, . . . , fn〉. Moreover, we may
replace q1 with fk without affecting the sum, hence we write Q′1f1 + . . .+ 0fk +
. . .+Q′nfn = 0. Thus, f1, . . . , fn is not a regular sequence.

2



8 Marc Moreno Maza1, Ryan Sandford2

Proposition 5. Let f1, . . . , fn be polynomials in K[x1, . . . , xn] which vanish on
p. Suppose f1, . . . , fn form a regular sequence in K[x1, . . . , xn], then f1, . . . , fn
form a regular sequence in OAn,p.

Proof: The case where n = 1 is straight forward, assume n > 1. Suppose
f1, . . . , fn is not a regular sequence in OAn,p. Then there is some i > 1 such
that fi is not regular modulo 〈f1, . . . , fi−1〉. Write,

Q1

q1
f1 + . . .+

Qi−1

qi−1
fi−1 =

Q

q
fi,

for some Q1, . . . , Qi−1, q1, . . . , qi−1, Q, q ∈ K[x1, . . . , xn] where q1, . . . , qi−1 do
not vanish on p and Q 6∈ 〈f1, . . . , fi−1〉. Observe we have,

(q̂1 · . . . · qi−1q)Q1f1 + . . .+ (q1 · . . . · q̂i−1q)Qi−1fi−1 = (q1 · . . . · qi−1)Qfi,

where q1 · . . . · q̂j · . . . · qi−1 is the product of q1 · . . . · qi−1 with qj omitted.
Since Q 6∈ 〈f1, . . . , fi−1〉 and since none of q1, . . . , qi−1 vanish on p and all of
f1, . . . , fi−1 vanish on p, we must have (q1 · . . . · qi−1)Q 6∈ 〈f1, . . . , fi−1〉, hence
fi is not regular modulo 〈f1, . . . , fi−1〉 in the polynomial ring. 2

Unlike corollary 1, and propositions 3 and 4, proposition 5 does not give a
permissible modification we can make to a regular sequence. Instead, proposition
5 states that to test for a regular sequence in the local ring, it is sufficient to
test for a regular sequence in the polynomial ring.

As mentioned earlier, our approach initially requires the input system to be
a regular sequence. Proposition 5 tells us this is a reasonable requirement which
can be tested using techniques for polynomial ideals.

3.4 Bivariate Intersection Multiplicity

It is shown in [3, Section 3-3] that the following seven properties characterize
intersection multiplicity of bivariate curves. Moreover, these seven properties
lead to a constructive procedure which computes the intersection multiplicity of
bivariate curves, which is given in algorithm 1.

Proposition 6 (Fulton’s Properties). Let p = (p1, p2) ∈ A2 and f, g ∈
K[x, y].

(2-1) Im(p; f, g) is a non-negative integer when V(f) and V(g) have no common
component at p, otherwise Im(p; f, g) =∞.

(2-2) Im(p; f, g) = 0 if and only if p 6∈ V(f) ∩V(g).
(2-3) Im(p; f, g) is invariant under affine changes of coordinates on A2.
(2-4) Im(p; f, g) = Im(p; g, f).
(2-5) Im(p; f, g) ≥ mfmg where mf and mg are the respective tailing degrees of

f and g expressed in K[x− p1, y− p2]. Moreover, Im(p; f, g) = mfmg when
V(f) and V(g) intersect transversally, i.e. have no tangent lines in common.

(2-6) Im(p; f, gh) = Im(p; f, g) + Im(p; f, h) for any h ∈ K[x, y].
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Algorithm 1: Fulton’s algorithm

1 Function im(p; f, g)
Input: Let: x � y
1. p ∈ A2 the origin.
2. f, g ∈ K[x, y] such that gcd(f, g)(p) 6= 0.

Output: Im(p; f, g)

2 if f(p) 6= 0 or g(p) 6= 0 then /* Red */

3 return 0

4 r ← degx (f(x, 0))
5 s← degx (g(x, 0))

6 if r > s then /* Green */

7 return im(p; g, f)

8 if r < 0 then /* y | f, Yellow */

9 write g(x, 0) = xm(am + am+1x + . . .)
10 return m + im(p; quo(f, y; y), g)

11 else /* Blue */

12 g′ = lc(f(x, 0)) · g − (x)s−rlc(g(x, 0)) · f
13 return im(p; f, g′)

(2-7) Im(p; f, g) = Im(p; f, g + hf) for any h ∈ K[x, y].

The following proposition was proved by Fulton in [3, Section 3-3]. It is
included here for the readers convenience, as we will use similar arguments in
later sections.

Proposition 7. Algorithm 1 is correct and terminates.

Proof: By (2-3) we may assume p is the origin. Let f, g be polynomials in K[x, y]
with no common component through the origin. By (2-1), Im(p; f, g) is finite.
We induct on Im(p; f, g) to prove termination. Suppose Im(p; f, g) = 0, then
by (2-2), at least one of f or g does not vanish at the origin and algorithm 1
correctly returns zero.

Now suppose Im(p; f, g) = n > 0 for some n ∈ N. Let r, s be the respective
degrees of f, g evaluated at (x, 0). By (2-4) we may reorder f, g to ensure r ≤ s.
Notice r, s 6= 0 since f, g vanish at the origin.

If r < 0, then f is a univariate polynomial in y which vanishes at the origin,
hence f is divisible by y. By (2-6) we have,

Im(p; f, g) = Im(p; y, g) + Im(p; quo(f, y; y), g) .

By definition of intersection multiplicity Im(p; y, g) = Im(p; y, g(x, 0)). Since
g(x, 0) vanishes at the origin and since g has no common component with f
at the origin, g(x, 0) is a non-zero univariate polynomial divisible by x. Write
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g(x, 0) = xm(am + am+1x + . . .) for some am, am+1, . . . ∈ K where m is the
largest positive integer such that am 6= 0. Applying (2-6), (2-5), and (2-2) yields

Im(p; f, g) = m+ Im(p; quo(f, y; y), g) .

Thus, algorithm 1 returns correctly when r < 0. Moreover, we can compute
Im(p; quo(f, y; y), g) < n by induction.

Now suppose 0 < r < s. By (2-7), replacing g with g′ preserves the inter-
section multiplicity. Notice such a substitution strictly decreases the degree in
x of g(x, 0). After finitely many iterations, we will obtain curves F,G such that
Im(p; f, g) = Im(p; F,G) and the degree in x of F (x, 0) < 0. 2

3.5 A Generalization of Fulton’s Properties

The following theorem gives a generalization of Fulton’s Properties for n poly-
nomials in n variables. This generalization of Fulton’s Properties was first dis-
covered by the authors of [6] and proved in [10].

Theorem 1. Let f1, . . . , fn be polynomials in K[x1, . . . , xn] such that
V(f1, . . . fn) is zero-dimensional. Let p = (p1, . . . , pn) ∈ An. The
Im(p; f1, . . . , fn) satisfies (n-1) to (n-7) where:

(n-1) Im(p; f1, . . . , fn) is a non-negative integer.
(n-2) Im(p; f1, . . . , fn) = 0 if and only if p 6∈ V(f1, . . . , fn).
(n-3) Im(p; f1, . . . , fn) is invariant under affine changes of coordinates on An.
(n-4) Im(p; f1, . . . , fn) = Im(p; σ(f1, . . . , fn)) where σ is any permutation.
(n-5) Im(p; (x1 − p1)m1 , . . . , (xn − pn)mn) = m1 · · ·mn for any m1, . . . ,mn ∈ N.
(n-6) Im(p; f1, . . . , fn−1, gh) = Im(p; f1, . . . , fn−1, g) + Im(p; f1, . . . , fn−1, h) for

any g, h ∈ K[x1, . . . , xn] such that f1, . . . , fn−1, gh is a regular sequence in
OAn,p.

(n-7) Im(p; f1, . . . , fn) = Im(p; f1, . . . , fn−1, fn + g) for any g ∈ 〈f1, . . . , fn−1〉.

4 Trivariate Fulton’s Algorithm

In this section we show how the n-variate generalization of Fulton’s proper-
ties can be used to create a procedure to compute intersection multiplicity in
the trivariate case. Later we will see this approach generalizes to the n-variate
case, although, it is helpful to first understand the algorithms behaviour in the
trivariate case.

This procedure is not complete since the syzygy computations, analogous to
those used in algorithm 1, do not necessarily preserve intersection multiplicity
under (n-7). When this is the case, the procedure returns Fail to signal an error.

When the procedure succeeds, we obtain a powerful tool for computing inter-
section multiplicities in the trivariate case. This allows us to compute intersection
multiplicities that previously could not be computed by other, standard basis
free approaches, namely that of [1] and [10].

Throughout this section we assume p ∈ A3 is the origin.
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Definition 4. Let f be in K[x, y, z] where x � y � z. We define the modular
degree of f with respect to a variable v ∈ V as degv (f mod 〈V<v〉), where
V = {x, y, z} is the set of variables and V<v is the set of all variables less than v
in the given ordering. If V<v = ∅, we define the modular degree of f with respect
to v to be the degree of f with respect to v. Write moddeg(f, v) to denote the
modular degree of f with respect to v.

Remark 2. The definition of modular degree can be generalized to a point p =
(p1, p2, p3) ∈ A3 by replacing V<v with V<v,p = {x− p1, y − p2, z − p3} in defi-
nition 4.

The modular degree is used to generalize the computation of r, s in algorithm
1. If we fix some variable v, the modular degree with respect to v is the degree
of a polynomial modulo all variables smaller than v in a given ordering.

Below we formally define cases in terms of the colour they are highlighted
with in algorithm 2. Although not necessary, using a name to distinguish between
cases rather then a set of conditions makes the proof far more readable, especially
when the set of cases is small, as is the case for trivariate intersection multiplicity.

In the n-variate case, we will see that some of these cases are not distinct and
in fact, instances of the same case. We will describe this in more detail later. For
now, we make this distinction to illustrate the similarities to algorithm 1 and to
help the reader build intuition for this procedure in a more general setting.

Definition 5 (Colour Cases). Consider f, g, h ∈ K[x, y, z].

1. We say we are in the red case if one of f, g, h does not vanish on p.
2. We say we are in the blue case if:

(a) We are not in the red case.
(b) The modular degrees of f, g, h in x are in ascending order.
(c) At least one of f or g has modular degree in x greater than zero.

3. We say we are in the orange case if:
(a) We are not in the red case.
(b) The modular degrees of f, g, h in x are in ascending order.
(c) Both f and g have modular degrees in x less than zero.

4. We say we are in the yellow case if:
(a) We are in the orange case.
(b) The modular degrees of f, g, h in x and the modular degrees of f, g in y

are in ascending order.
(c) The modular degree of f in y is less than zero.

5. We say we are in the pink case if:
(a) We are in the orange case.
(b) The modular degrees of f, g, h in x and the modular degrees of f, g in y

are in ascending order.
(c) The modular degree of f in y is greater than zero.

Remark 3. Note that when we are not in the red case for f, g, h the modular
degrees of f, g, h can never be zero as f, g, h vanish at p.
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Algorithm 2: Trivariate Fulton’s Algorithm

1 Function im3(p; f, g, h)
Input: Let: x � y � z
1. p ∈ A3 the origin.
2. f, g, h ∈ K[x, y, z] such that f, g, h form a regular sequence in OA3,p or one

of f, g, h is a unit in OA3,p.

Output: Im(p; f, g, h) or Fail

2 if f(p) 6= 0 or g(p) 6= 0 or h(p) 6= 0 then /* Red */

3 return 0

4 ry ← moddeg(f, y), rx ← moddeg(f, x)
5 sy ← moddeg(g, y), sx ← moddeg(g, x)
6 ty ← moddeg(h, y), tx ← moddeg(h, x)

7 Reorder f, g, h so that rx ≤ sx ≤ tx /* Green */

8 if rx < 0 and sx < 0 then /* Orange */

9 Reorder f, g so that ry ≤ sy /* Green */

10 if ry < 0 then /* Yellow */

11 mh ← max(m ∈ N | h mod 〈y, z〉 = xm(a0 + a1x+ . . .))
12 qf ← quo(f, z; z)
13 qg ← quo(g(x, y, 0), y; y)
14 return im3(p; qf , g, h) + im(p; qg, h(x, y, 0)) +mh

15 else /* Pink */

16 Lf ← lc(f(x, y, 0); y)
17 Lg ← lc(g(x, y, 0); y)
18 if Lf (p) 6= 0 then
19 g′ ← Lfg − ysy−ryLgf
20 return im3(p; f, g′, h)

21 else if Lf | Lg then

22 g′ ← g − ysy−ry Lg

Lf
f

23 return im3(p; f, g′, h)

24 else
25 return Fail

26 else /* Blue */

27 if rx < 0 then
28 h′ ← lc(g(x, 0, 0);x)h− xtx−sx lc(h(x, 0, 0);x)g
29 return im3(p; f, g, h′)

30 else
31 g′ ← lc(f(x, 0, 0);x)g − xsx−rx lc(g(x, 0, 0);x)f
32 h′ ← lc(f(x, 0, 0);x)h− xtx−rx lc(h(x, 0, 0);x)f
33 return im3(p; f, g′, h′)
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Algorithm 2 generalizes Fulton’s approach in the trivariate case. The key to
generalizing Fulton’s approach to 3 polynomials in 3 variables is generalizing the
splitting computation. When the yellow case holds, we can split the intersection
multiplicity computation into the sum of smaller intersection multiplicity com-
putations. Thus, the rest of the algorithm is designed to reduce to the yellow
case, or return Fail, in finitely many iterations.

At this time there is no clear way to characterize when algorithm 2 fails
since it is difficult to determine before runtime which cases will be reached after
rewriting and splitting. Namely, it is difficult to characterize all inputs which
will eventually reach a branch which satisfies the conditions of the pink case.
Given an input that does satisfy the conditions of pink case, it is easy to check
whether algorithm 2 fails in that iteration, as we will see in the proof of theorem
2.

Theorem 2. Algorithm 2 correctly computes the intersection multiplicity of a
regular sequence f, g, h ∈ K[x, y, z] or returns Fail.

Proof: Let f, g, h ∈ K[x, y, z] be a regular sequence in OA3,p. By (n-3) we may
assume p is the origin. By proposition 2, V(f, g, h) is zero-dimensional, hence
by (n-1), Im(p; f, g, h) ∈ N.

To prove termination we induct on Im(p; f, g, h) and show that when algo-
rithm 2 does not fail, we can either compute Im(p; f, g, h) directly or strictly
decrease Im(p; f, g, h) through splitting.

Suppose Im(p; f, g, h) = 0, then by (n-2), one of f, g, h does not vanish on
p, hence, algorithm 2 correctly returns zero. Assume that Im(p; f, g, h) = N for
some positive N ∈ N.

By (n-4) and corollary 1, we may reorder f, g, h so that their modular degrees
with respect to x are in ascending order.

Suppose f, g, h satisfy the conditions of the blue case, that is, at most one
polynomial has modular degree in x less than zero. Depending on how many
polynomials have modular degree in x less than zero, we perform slightly different
syzygy computations, since there is no need to reduce a modular degree in x of
a polynomial that already has modular degree in x less than zero. Notice the
syzygy computations in the blue case preserve intersection multiplicity by (n-
7) and regular sequences by proposition 3. Since the modular degrees in x of
the resulting polynomials is strictly decreasing, we will reach the orange case in
finitely many iterations.

By (n-4) and corollary 1, we may reorder f, g so that their modular degrees
with respect to y are in ascending order.

Suppose f, g, h satisfy the conditions of the pink case. Define,

Lf = lc(f(x, y, 0); y)

Lg = lc(g(x, y, 0); y).

If Lf is not a unit in OAn,p and does not divide Lg, algorithm 2 returns Fail
since (n-7) cannot be applied to the syzygy computations.
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Suppose either Lf (p) 6= 0 or Lf | Lg. Then the respective syzygy computa-
tions preserve intersection multiplicity by (n-7) and regular sequences by propo-
sition 3. Moreover, if g′ is the polynomial resulting from either of the respective
syzygy computations, then moddeg(g′, y) < moddeg(g, y) and moddeg(g′, x) <
0. The latter statement follows from both f and g having modular degree in x
less than zero as a result of being in the orange case. Since the modular degree
of g′ with respect to y strictly decreases, we will reach the yellow case or return
Fail in finitely many iterations.

Suppose f, g, h satisfy the conditions of the yellow case. Since moddeg(f, x) <
0, moddeg(f, y) < 0, f is non-zero, and f vanishes at the origin, we have z | f .

By proposition 4, the sequence z, g, h is regular, hence g(x, y, 0) is non-zero
and vanishes at the origin. Since moddeg(g, x) < 0 holds, we have y | g(x, y, 0).

Write f = zqf , g(x, y, 0) = yqg, and mh = max(m ∈ Z+ | h(x, 0, 0) ≡ 0
mod 〈xm〉). By (n-6) and proposition 4, it is correct to compute:

Im(p; f, g, h) = Im(p; qf , g, h) + Im(p; z, qg, h) + Im(p; z, y, h)

= Im(p; qf , g, h) + Im(p; z, qg, h) +mh

= Im(p; qf , g, h) + Im(p; qg, h(x, y, 0)) +mh.

Since mh is a positive integer, we have:

Im(p; qf , g, h) , Im(p; qg, h(x, y, 0)) < Im(p; f, g, h) = N.

Thus, when algorithm 2, called on the input qf , g, h, does not fail, termination
follows from induction. 2

To illustrate the utility of this approach we will work through an example
where the available standard basis free techniques used to compute intersection
multiplicity fail. A full description of these techniques can be found in [1] and [10],
although we give a brief overview below.

Suppose for f1, . . . , fn ∈ K[x1, . . . , xn], we have V(f1, . . . , fn) is a zero-
dimensional, that is, Im(p; f1, . . . , fn) ∈ N, and at least one of f1, . . . , fn, say fn
is non-singular at p. Theorem 1 of [1], states that when the above conditions hold,
and under an additional transversality constraint between V(f1, . . . , fn−1) and
V(fn), an n-variate intersection multiplicity can be reduced to an n− 1-variate
intersection multiplicity computation.

In [10], the above reduction is combined with an additional reduction pro-
cedure referred to as cylindrification. The idea behind this second reduction
procedure is to use pseudo-division by a polynomial, say fn, to reduce the de-
gree of f1, . . . , fn−1 with respect to some variable, say xn. The cylindrification
procedure assumes that fn has a term containing xn with a non-zero coefficient
invertible in OAn,p.

The following example contains 3 polynomials which are singular at p, hence
the above reduction cannot be applied. Moreover, one can check that applying
cylindrification does not reduce the input in a way that the first reduction crite-
rion holds. Hence, the current standard basis free techniques fail. Additionally,
this can be verified using the Maple implementation of the techniques in [10].
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Example 1. Compute Im
(
p; zy2, y5 − z2, x5 − y2

)
using Algorithm 2.

Notice, zy2, y5−z2, x5−y2 form a regular sequence. We compute the modular
degrees with respect to x: rx < 0, sx < 0, tx = 5, hence, we begin in the orange
case. Since additionally, ry < 0, we are in the yellow case and the computation
reduces to:

Im
(
p; zy2, y5 − z2, x5 − y2

)
= Im

(
p; y2, y5 − z2, x5 − y2

)
+Im

(
p; y4, x5 − y2

)
+5.

Start with Im
(
p; y4, x5 − y2

)
, applying Fulton’s bivariate algorithm we get,

Im
(
p; y4, x5 − y2

)
= Im

(
p; y3, x5 − y2

)
+ 5

= Im
(
p; y2, x5 − y2

)
+ 10

= Im
(
p; y, x5 − y2

)
+ 15

= 20.

Next we compute Im
(
p; y2, y5 − z2, x5 − y2

)
. Here we have modular degrees

in x: rx < 0, sx < 0, tx = 5, thus we are in the orange case. Computing the
modular degrees in y we get: ry = 2, sy = 5, hence we enter the pink case. The
leading coefficient in y of y5 − z2 evaluated at z = 0 is a unit, hence the pink
case computation is valid. Thus, let g′ = (y5 − z2)− y3(y2) = −z2 and compute
Im
(
p; y2,−z2, x5 − y2

)
.

Computing the modular degrees with respect to y we get: ry = 2, sz < 0,
hence we reorder y2 and −z2. Again, we enter the yellow case and the compu-
tation reduces to

Im
(
p; −z2, y2, x5 − y2

)
= Im

(
p; −z, y2, x5 − y2

)
+ Im

(
p; y, x5 − y2

)
+ 5.

Clearly Im
(
p; y, x5 − y2

)
= 5 by Fulton’s bivariate algorithm. The computa-

tion Im
(
p; −z, y2, x5 − y2

)
immediately satisfies the yellow case, hence we may

split,

Im
(
p; −z, y2, x5 − y2

)
= Im

(
p; −1, y2, x5 − y2

)
+ Im

(
p; y, x5 − y2

)
+ 5

= 0 + 5 + 5

= 10

Combining the intermediate computations, we get,

Im
(
p; zy2, y5 − z2, x5 − y2

)
= 45.

5 Generalized Fulton’s Algorithm

In this section, we give a generalization of algorithm 1 using properties (n-1) to
(n-7). Unfortunately, the natural generalization using these properties does not
characterize intersection multiplicities as in the bivariate case. There are two
main reasons for this.
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First, property (n-6) requires the input polynomials form a regular sequence
in order to split. In the bivariate case, splitting with (2-6) was always possible.
Thus, for our generalization, we must assume our input is a regular sequence
whenever the intersection multiplicity is not zero.

Second, syzygy computations do not necessarily preserve intersection mul-
tiplicity in the n-variate case. In particular, if a leading coefficient used in the
syzygy computation is not invertible in the local ring, (n-7) may not be applica-
ble. In the bivariate case, all leading coefficients considered in such a computation
were units in the local ring. When such a case arises, other techniques must be
used to complete the computation, and hence our generalization will signal an
error.

Throughout this section we assume p ∈ An is the origin and n > 1.

Definition 6. Let f be in K[x1, . . . , xn] where x1 � . . . � xn. We define the
modular degree of f with respect to a variable v ∈ V as degv (f mod 〈V<v〉),
where V = {x1, . . . , xn} is the set of variables and V<v is the set of all variables
less than v in the given ordering. If V<v = ∅, we define the modular degree of f
with respect to v to be the degree of f with respect to v. Write moddeg(f, v) to
denote the modular degree of f with respect to v.

Remark 4. The definition of modular degree can be generalized to a point p =
(p1, . . . , pn) ∈ An by replacing V<v with V<v,p = {xi − pi |xi < v} in definition
6.

Remark 5. When f1, . . . , fn ∈ K[x1, . . . , xn] form a regular sequence in OAn,p,
the modular degrees of f1, . . . , fn can never be zero since f1, . . . , fn vanish at p.

Unlike in the trivariate case, it is no longer practical to partition the algorithm
into coloured cases. Moreover, we will see that this does not accurately reflect
the structure of the procedure. The main reason for this is that several of the
cases we encountered in the past are instances of the same, more general case.

Roughly speaking, algorithm 3 can be divided into 2 key parts. The first is the
main loop which modifies the input using syzygy computations and reordering
polynomials. The second is the splitting part, which occurs as a result of the
main loop successfully terminating.

The purpose of the main loop, in the j-th iteration, is to create n− j poly-
nomials with modular degrees less than zero in xj and in any variable larger
than xj . When we examine algorithm 2 in this context, we see the orange and
yellow case were simply conditions necessary to move forward an iteration in
the main loop. Moreover, the syzygy computations in the blue and pink case
were separate instances of the same process, which is used to reduce modular
degrees for different iterations of the main loop. We highlight line 7 of algorithm
3 with the colour orange to illustrate the similarities between moving forward
an iteration in the loop and satisfying the orange case in algorithm 2.

Recall in algorithm 2 there were several possible syzygy computations that
could be performed in the blue case, the deciding factor being, how many of the
input polynomials had modular degree in x less than zero. Extending this to the
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context of the n-variate algorithm, in each iteration of the main loop, we check
how many polynomials already satisfy the condition required to move forward an
iteration. As in the blue case, this determines how many syzygy computations to
perform and which polynomials will be used in said computations. To illustrate
these similarities, we highlight line 11 of algorithm 3 with the colour blue.

When the main loop terminates, assuming the procedure did not fail, our
input system will have a of triangular shape with respect to modular degrees.
That is, consider R, the n × n matrix of modular degrees, where Ri,j is the
modular degree of fi with respect to xj . Upon successful termination of the
main loop, any entry of R which lies above the anti-diagonal will be negative
infinity. Lemma 1, describes the implications of this triangular shape in terms
of splitting intersection multiplicity computations. To illustrate the similarities
between this splitting procedure, and the procedure used in the yellow case of
algorithm 2, we highlight line 22 of algorithm 3 with the colour yellow.

As in the trivariate case, we cannot clearly characterize all cases for which
algorithm 3 fails before runtime, due to the difficulty in determining how an input
will be rewritten and split. Nonetheless, it is still easy to determine whether an
input will cause algorithm 3 to fail in a given iteration of the main loop, as
described in the proof of theorem 3.

Lemma 1. Let f1, . . . , fn be polynomials in K[x1, . . . , xn] which form a regular
sequence in OAn,p where p is the origin. Let V = {x1, . . . , xn} and let V>v =
{xi ∈ V | xi > v}. Define the map J : {1, . . . , n− 1} → {2, . . . , n} such that
J(i) = n− i+ 1.

Suppose for all i = 1, . . . , n − 1 we have moddeg(fi, v) < 0 for all v ∈
V>xJ(i)

. Then, we have xJ(i) | fi(x1, . . . , xJ(i), 0, . . . , 0). Moreover, if we define
qi = quo(fi(x1, . . . , xJ(i), 0, . . . , 0), xJ(i);xJ(i)) then,

Im(p; f1, . . . , fn) = Im(p; q1, f2, . . . , fn) + Im(p; xn, q2, . . . , fn)

+ . . .+ Im
(
p; xn, . . . , xJ(i)+1, qi, fi+1, . . . , fn

)
+ . . .

+ Im(p; xn, xn−1, . . . , qn−1, fn) +mn

where mn = max(m ∈ Z+ | fn(x1, 0, . . . , 0) ≡ 0 mod 〈xm1 〉).

Proof: First we will show that we can write fi(x1, . . . , xJ(i), 0, . . . , 0) = xJ(i)qi
for all i = 1, . . . , n− 1.

Suppose xn, . . . , xJ(i)+1, fi, . . . , fn is a regular sequence for some 1 ≤ i < n.
The hypothesis moddeg(fi, x1), . . . ,moddeg(fi, xJ(i)−1) < 0 and the fact that
fi is regular modulo 〈xJ(i)+1, . . . , xn〉 and vanishes at the origin implies xJ(i)
divides fi(x1, . . . , xJ(i), 0, . . . , 0).

To show xn, . . . , xJ(i)+1, fi, . . . , fn is a regular sequence for all 1 ≤ i < n, it
suffices to show xn, f2, . . . , fn is a regular sequence, since repeated applications
of proposition 4, and the above implication will yield the desired result.

Observe moddeg(f1, x1), . . . ,moddeg(f1, xn−1) < 0 and f1 is a non-zero poly-
nomial which vanishes at the origin, and hence, must be divisible by xn. By
applying proposition 4 we get xn, f2, . . . , fn is a regular sequence.
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Algorithm 3: Generalized Fulton’s Algorithm

1 Function imn(p; f1, . . . , fn)
Input: Let: x1 � . . . � xn, n ≥ 2
1. p ∈ An the origin.
2. f1, . . . , fn ∈ K[x1, . . . , xn] such that f1, . . . , fn form a regular sequence in OAn,p

or one such fi is a unit in OAn,p.

Output: Im(p; f1, . . . , fn) or Fail

2 if fi(p) 6= 0 for any i=1,. . . ,n then /* Red */

3 return 0

4 for i = 1, . . . , n do
5 for j = 1, . . . , n− 1 do

6 r
(i)
j ← moddeg(fi, xj)

7 for j = 1, . . . , n− 1 do /* Orange */

8 Reorder f1, . . . , fn−j+1 so that r
(1)
j ≤ . . . ≤ r

(n−j+1)
j /* Green */

9 m← min(i | r(i)j > 0) or m←∞ if no such i exists

10 if m ≤ (n− j) then

11 for i = m + 1, . . . , n− j + 1 do /* Blue */

12 d← r
(i)
j − r

(m)
j

13 Lm ← lc(fm(x1, . . . , xj , 0, . . . , 0);xj)
14 Li ← lc(fi(x1, . . . , xj , 0, . . . , 0);xj)
15 if Lm(p) 6= 0 then

16 f ′i ← Lmfi − xd
jLifm

17 else if Lm | Li then

18 f ′i ← fi − xd
j

Li
Lm

fm

19 else
20 return Fail

21 return imn(p; f1, . . . , fm, f ′m+1, . . . , f
′
n−j+1, . . . , fn)

22 /* Yellow */

23 mn ← max(m ∈ Z+ | fn(x1, 0, . . . , 0) ≡ 0 mod 〈xm
1 〉)

24 for i = 1, . . . , n− 1 do
25 qi ← quo(fi(x1, . . . , xn−i+1, 0, . . . , 0), xn−i+1;xn−i+1)

26 return
27 imn(p; q1, f2, . . . , fn)
28 + imn−1(p; q2(x1, . . . , xn−1, 0), . . . , fn(x1, . . . , xn−1, 0))
29 +

30
...

31 +im2(p; qn−1(x1, x2, 0, . . . , 0), fn(x1, x2, 0, . . . , 0))
32 +mn
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Since f1, . . . , fn is a regular sequence we may apply (n-6) to get

Im(p; f1, . . . , fn) = Im(p; xn, f2, . . . , fn) + Im(p; q1, f2, . . . , fn) .

By definition of intersection multiplicity,

Im(p; xn, f2, . . . , fn) = Im(p; xn, f2(x1, . . . , xn−1, 0), . . . , fn(x1, . . . , xn−1, 0)) .

Continuing in this way we get,

Im(p; f1, . . . , fn) = Im(p; q1, f2, . . . , fn) + Im(p; xn, q2, . . . , fn) + . . .

+ Im(p; xn, xn−1, . . . , qn−1, fn) + Im(p; xn, . . . , x2, fn) .

By definition of intersection multiplicity,

Im(p; xn, . . . , x2, fn) = max(m ∈ Z+ | fn(x1, 0, . . . , 0) ≡ 0 mod 〈xm1 〉),

which completes the proof.
2

Corollary 2. When the conditions of lemma 1 hold,

Im(p; f1, . . . , fn) = Im(p; q1, f2, . . . , fn)

+ Im(p; q2(x1, . . . , xn−1, 0), . . . , fn(x1, . . . , xn−1, 0)) +

...

+ Im(p; qn−1(x1, x2, 0, . . . , 0), fn(x1, x2, 0, . . . , 0))

+ mn.

Proof: Follows from lemma 1 and the definition of intersection multiplicity. 2

Theorem 3. Algorithm 3 correctly computes the intersection multiplicity of a
regular sequence f1, . . . , fn ∈ K[x1, . . . , xn] or returns Fail.

Proof: Let f1, . . . , fn ∈ K[x1, . . . , xn] be a regular sequence in OAn,p. By (n-3) we
may assume p is the origin. By proposition 2, V(f1, . . . , fn) is zero-dimensional,
hence by (n-1) we may assume Im(p; f1, . . . , fn) ∈ N.

To prove termination we induct on Im(p; f1, . . . , fn), and show that when
algorithm 3 does not return Fail, we can either compute Im(p; f1, . . . , fn) directly
or strictly decrease Im(p; f1, . . . , fn) through splitting.

Suppose Im(p; f1, . . . , fn) = 0, then by (n-2), one of f1, . . . , fn does not
vanish at p, hence algorithm 3 correctly returns zero. Thus, we may assume
Im(p; f1, . . . , fn) = N for some positive N ∈ N.

First, we claim that either algorithm 3 returns Fail or the input polynomials
can be modified while preserving intersection multiplicity such that they satisfy
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the conditions of lemma 1. Moreover, we claim such modifications can be per-
formed in finitely many iterations. To modify the input such that they satisfy
the conditions of lemma 1, we proceed iteratively.

Fix some xj where 1 ≤ j ≤ n − 1, and suppose f1, . . . , fn−j+k all have
modular degree in xj−k less than zero for any 1 ≤ k < j whenever j > 1.
Notice f1, . . . , fn−j+1 are the polynomials which have modular degree less than
zero in all variables greater then xj . By (n-4) and corollary 1 we may rearrange
f1, . . . , fn−j+1 so that their modular degrees with respect to xj are ascending.

To satisfy the conditions of lemma 1, in the j-th iteration we must have n−j
polynomials in {f1, . . . , fn−j+1} with modular degree in xj less than zero. Since
the modular degrees are in ascending order we may compute,

m =

{
min(i | moddeg(fi, xj) > 0) if such an i exists,

∞ otherwise.

If m > n − j then f1, . . . , fn−j satisfy the conditions of lemma 1 for the
variable xj and hence we are done.

Suppose m ≤ n− j. We will use fm in a syzygy computation with fi for all
i = m+ 1, . . . , n− j + 1 to reduce the modular degree of each fi with respect to
xj . Define,

Lm = lc(fm(x1, . . . , xj , 0, . . . , 0);xj),

Li = lc(fi(x1, . . . , xj , 0, . . . , 0);xj),

and

d = moddeg(fi, xj)−moddeg(fm, xj).

If Lm(p) = 0 and there is an i such that Li 6 |Lm, then (n-7) will not preserve
intersection multiplicity under the syzygy computation since Lm is not a unit in
the local ring. When this case occurs, we return Fail.

Suppose either Lm(p) 6= 0 or for all i we have Lm | Li. In which case, (n-7)
allows us to replace fi with f ′i = Lmfi−xdLifm or f ′i = fi−xd Li

Lm
fm respectively.

Moreover, proposition 3 tells us such a substitution preserves regular sequences.

Notice if j > 1, then moddeg(f ′i , xj−k) < 0 for all 1 ≤ k < j, since, by
assumption, both fi and fm have modular degree in xj−k less than zero. Thus,
making such a substitution preserves the assumptions of our hypothesis. Lastly,
since moddeg(f ′i , xj) < moddeg(fi, xj), we will have n − j polynomials with
modular degree in xj less than zero or return Fail, in finitely many iterations.

Thus we may now assume f1, . . . , fn satisfy the conditions of lemma 1, hence
the algorithm correctly splits computations by lemma 1 and corollary 2.

To show termination, we may suppose none of the split computations fail,
since in such a case, termination is immediate. Since mn, as defined in lemma
1, is a positive integer, each term has intersection multiplicity strictly less than
Im(p; f1, . . . , fn) = N and hence termination follows by induction. 2



Extending Fulton’s Algorithm 21

6 Triangular Regular Sequences

In this section we consider input systems with a triangular shape. We observe
that under a mild constraint, such a system is a regular sequence. Moreover, the
triangular shape combined with being a regular sequence allows us to compute
the intersection multiplicity of such a system using (n-6).

At this time there are no known triangular decomposition techniques that
preserve intersection multiplicity for a polynomial ideal in the local ring; al-
though, if such a technique were to be discovered, the following observation
could lead to a complete algorithm for computing intersection multiplicity.

Definition 7. The main variable of a polynomial f ∈ K[x1, . . . , xn] where x1 �
. . . � xn is the largest variable xi such that lc(f ;xi) is non-zero.

Theorem 4 (McCoy’s Theorem). Let f be a non-zero polynomial in R[x]
where R is a commutative ring. Then f is a regular element of R[x] if and only
if ever non-zero s ∈ R is such that sf 6= 0.

McCoy’s Theorem is a well-known result proven in [9].

Corollary 3. Consider a sequence t1, . . . , tn such that for i = 1, . . . , n, each ti
is a non-zero polynomial in K[xi, . . . , xn] with main variable xi.

If at least one non-zero coefficient of ti−1 is invertible modulo 〈ti, . . . , tn〉 for
all 1 < i ≤ n, then t1, . . . , tn is a regular sequence in K[x1, . . . , xn]. If t1, . . . , tn
also vanish on p ∈ An then t1, . . . , tn is a regular sequence in OAn,p.

Proof: The first statement follows from theorem 4, the second statement follows
from the first statement and proposition 5. 2

Proposition 8. Consider a sequence t1, . . . , tn such that for i = 1, . . . , n, each
ti is a non-zero polynomial in K[xi, . . . , xn] with main variable xi.

Suppose each t1, . . . , tn vanish at the origin, which we denote by p, and sup-
pose at least one non-zero coefficent of ti−1 is invertible modulo 〈ti, . . . , tn〉 for
1 < i ≤ n.

Then we may write ti(xi, 0, . . . , 0) as xmi
i fi where mi is the least positive

integer such that fi ∈ K[xi] does not vanish at the origin. Moreover,

Im(p; t1, . . . , tn) = m1 · . . . ·mn.

Proof: The result is trivial for n = 1, so we may assume n > 1. Since
ti(xi, 0, . . . , 0) is a non-zero univariate polynomial in K[xi] which vanishes at
the origin, we may write ti(xi, 0, . . . , 0) = xmi

i fi for a positive integer mi and fi
a unit in the local ring at p.
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By corollary 3, t1, . . . , tn is a regular sequence in OAn,p. Hence, we may apply
(n-6) and proposition 4 repeatedly and finally (n-5) to get,

Im(p; t1, . . . , tn) = Im(p; t1, . . . , tn−1, x
mn
n fn)

= Im(p; t1, . . . , tn−1, x
mn
n ) + Im(p; t1, . . . , fn)

= mnIm(p; t1, . . . , tn−1(xn−1, 0), xn) + 0

= mnIm
(
p; t1, . . . , x

mn−1

n−1 fn−1, xn
)

= mnmn−1Im(p; t1, . . . , xn−1, xn) + 0

...

= m1 · . . . ·mnIm(p; x1, . . . , xn)

= m1 · . . . ·mn.

2
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