
Towards Extending Fulton’s Algorithm for Computing
Intersection Multiplicities Beyond the Bivariate Case

CASC 2021

Marc Moreno Maza, Ryan Sandford

Department of Computer Science, The University of Western Ontario, Canada

November 4, 2021

Marc Moreno Maza, Ryan Sandford Extending Fulton’s Algorithm November 4, 2021 1 / 30



Example

Figure: Im
(
(0, 0); y − x , x3 + xy 2 + x2 − y 2

)
= 3
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Fulton

In his work Algebraic Curves [Ful89], Fulton gave a constructive,
axiomatic, characterization of intersection multiplicities for two
bivariate, planar curves.

His proof leads to a complete procedure for computing intersection
multiplicities in the bivariate case.

Fulton’s approach uses seven properties to rewrite the input until the
intersection multiplicity can either be computed or expressed as the
sum of smaller intersection multiplicities.
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Fulton’s Properties

Theorem (Fulton’s Properties)

Let p = (p1, p2) ∈ A2(K) and f , g ∈ K[x , y ].

(2-1) Im(p; f , g) is a non-negative integer when V(f ) and V(g) have no
common component at p. When V(f ) and V(g) do have a
component in common at p, Im(p; f , g) =∞.

(2-2) Im(p; f , g) = 0 if and only if p 6∈ V(f , g).

(2-3) Im(p; f , g) is invariant under affine changes of coordinates on A2.

(2-4) Im(p; f , g) = Im(p; g , f ).

(2-5) Im(p; (x − p1)m1 , (y − p2)m2) = m1m2 for m1,m2 ∈ N.

(2-6) Im(p; f , gh) = Im(p; f , g) + Im(p; f , h) for any h ∈ K[x , y ] such

that Im(p; f , gh) ∈ N.

(2-7) Im(p; f , g) = Im(p; f , g + hf ) for any h ∈ K[x , y ].

Marc Moreno Maza, Ryan Sandford Extending Fulton’s Algorithm November 4, 2021 5 / 30



Fulton’s Algorithm
Algorithm 1: Fulton’s algorithm

1 Function im2(f , g)
Input: Let: x � y

1 f , g ∈ K[x , y ] such that gcd(f , g)(0, 0) 6= 0.

Output: Im((0, 0); f , g)

2 if f (0, 0) 6= 0 or g(0, 0) 6= 0 then
3 return 0

4 r ← degx (f (x , 0))
5 s ← degx (g(x , 0))

6 if r > s then
7 return im2(g , f )

8 if r < 0 then /* y | f */

9 write g(x , 0) = xm(am + am+1x + . . .)
/* im2(f , g) = im2(quo(f , y ; y), g) + im2(y , g) */

10 return im2(quo(f , y ; y), g) + m

11 else
12 g ′ = lc(f (x , 0)) · g − (x)s−r lc(g(x , 0)) · f
13 return im2(f , g ′)
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Related Work

The first algorithmic solution to computing intersection multiplicities
was proposed by Mora and is described in [DGPS18].

Mora’s solution is implemented in Singular and relies on the use of
standard bases.

Additionally, several standard basis free approaches were investigated
in [MMV12, AMSV15, Vrb14], which apply an algorithmic criterion to
reduce to the bivariate case.
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Our Contribution

Our approach to computing intersection multiplicities without the use
of standard bases, was to extend Fulton’s algorithm to the n-variate
case, rather then reducing to the bivariate case.

In doing so, we successfully developed a partial algorithm which
generalizes the techniques used in Fulton’s algorithm to the n-variate
setting.

Our generalization is not complete as Fulton’s algorithm relies on a
property which is not generically true beyond the bivariate case.
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Intersection Multiplicity and Local Rings

Let K be an algebraically closed field and let An denote affine n space
over K.

Definition (Local Ring)

Take p ∈ An, we define the local ring at p as

OAn,p :=

{
f

g
| f , g ∈ K[x1, . . . , xn] where g(p) 6= 0

}
.

Definition (Intersection Multiplicity)

Let f1, . . . , fn ∈ K[x1, . . . , xn]. We define the intersection multiplicity of
f1, . . . , fn at p as the dimension of the local ring at p modulo the ideal
generated by f1, . . . , fn in the local ring at p, as a vector space over K.
That is,

Im(p; f1, . . . , fn) := dimK(OAn,p /〈f1, . . . , fn〉) .
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Regular Sequences

An assumption of Fulton’s algorithm states that the input polynomials
must not have a common factor which vanishes on p, where p ∈ An is
the point which we wish to compute the intersection multiplicity over.

This assumption generalizes to the condition that the input
f1, . . . , fn ∈ K[x1, . . . , xn] must be a regular sequence in the local ring
at p.

Roughly this means given f1, . . . , fn as input, no fi is a unit, zero, or a
zero-divisor modulo the ideal generated by any subset of the
remaining input polynomials, in the local ring at p.
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Generalizing Fulton’s Properties

Theorem (Fulton’s Properties)

Let p = (p1, . . . , pn) ∈ An and f1, . . . , fn ∈ K[x1, . . . , xn].

(n-1) Im(p; f1, . . . , fn) is a non-negative integer when V(f1, . . . , fn) is
zero-dimensional.

(n-2) Im(p; f1, . . . , fn) = 0 if and only if p 6∈ V(f1, . . . , fn).

(n-3) Im(p; f1, . . . , fn) is invariant under affine changes of coordinates on
An.

(n-4) Im(p; f1, . . . , fn) = Im(p; σ(f1, . . . , fn)).

(n-5) Im(p; (x1 − p1)m1 , . . . , (xn − pn)mn) = m1 · . . . ·mn for
m1, . . . ,mn ∈ N.

(n-6) Im(p; f1, . . . , gh) = Im(p; f1, . . . , g) + Im(p; f1, . . . , h) for any

g , h ∈ K[x1, . . . , xn] such that f1, . . . , gh is a regular sequence in
OAn,p.

(n-7) Im(p; f1, . . . , fn) = Im(p; f1, . . . , fn + g) for any g ∈ 〈f1, . . . , fn−1〉.
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Modular Degrees
In Fulton’s algorithm, we considered
r = degx (f (x , 0)) , s = degx (g(x , 0)) for f , g ∈ K[x , y ].

Using r , s we then determined an appropriate rewrite rule to apply to
f , g .

The following definition generalizes this notion to the n-variate case.

Definition (Modular Degree)

Take p ∈ An, v ∈ {x1, . . . , xn}, and f ∈ K[x1, . . . , xn] where x1 � . . . � xn.
We define the modular degree of f at p with respect to v as

degv (f mod 〈V<v ,p〉) ,

where V<v ,p = {xi − pi |xi ≺ v}. If V<v ,p = ∅ then the modular degree of
f at p with respect to v is simply the degree of f with respect to v .

Often we will assume p is the origin, in which case we write
moddeg(f , v) to denote the modular degree of f at v .
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Splitting

The following lemma uses modular degrees to generalize the
conditions of the splitting (yellow) case in Fulton’s algorithm.

Lemma

Let f1, . . . , fn ∈ K[x1, . . . , xn] forming a regular sequence in OAn,p where p
is the origin. Let V = {x1, . . . , xn} and let V>v = {xi ∈ V | xi > v}.
Define J : {1, . . . , n − 1} → {2, . . . , n} such that J(i) = n − i + 1.

Assume moddeg(fi , v) < 0 holds for all i = 1, . . . , n − 1 and all v ∈ V>xJ(i) .

Then, we have xJ(i) | fi (x1, . . . , xJ(i), 0, . . . , 0). Moreover, if we define

qi = quo(fi (x1, . . . , xJ(i), 0, . . . , 0), xJ(i); xJ(i)) then,

Im(p; f1, . . . , fn) = Im(p; q1, f2, . . . , fn) + Im(p; xn, q2, . . . , fn)
+ . . .+ Im

(
p; xn, . . . , xJ(i)+1, qi , fi+1, . . . , fn

)
+ . . .

+ Im(p; xn, xn−1, . . . , qn−1, fn) + mn

where mn = max(m ∈ Z+ | fn(x1, 0, . . . , 0) ≡ 0 mod 〈xm1 〉).
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Splitting Continued
Simply put, the above lemma states when the matrix of modular
degrees has a triangular shape we may split the intersection
multiplicity into smaller computations.

Example

Let f1, f2, f3 ∈ K[x1, x2, x3], let x1 � x2 � x3 and let p ∈ A3 be the origin.
Take f1 = x3(x2 + 1), f2 = x32 + x3, f3 = x23 + x32 + x41 (x1 + 1). Write R the
matrix of modular degrees such that Ri ,j = moddeg(fi , xj)

R =

−∞ −∞ 1
−∞ 3 1

4 3 2

 ,
Im(p; f1, f2, f3) = Im(p; x2 + 1, f2, f3) + Im(p; x3, f2, f3)

= Im(p; x2 + 1, f2, f3) + Im
(
p; x3, x

2
2 , f3

)
+ Im(p; x3, x2, f3)

= 0 + 8 + 4
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Why The Generalization is Not Complete

Assume p is the origin.

In the bivariate case for polynomials f , g ∈ K[x , y ], one step of the
algorithm may replace g with g ′ := lc(f (x , 0))g − xd lc(g(x , 0))f for
some d ∈ N. This preserves intersection multiplicity since
lc(f (x , 0)) ∈ K and hence 〈f , g〉 = 〈f , g ′〉, i.e. property (2-7) applies.

When we generalize this, say with polynomials
f1, . . . , fn ∈ K[x1, . . . , xn], we replace some fj with

f ′j := lc(fi (x1, . . . , xk , 0, . . . , 0); xk)fj−xdk lc(fj(x1, . . . , xk , 0, . . . , 0); xk)fi ,

for some i , j , k , d ∈ N, i 6= j .

Unlike the bivariate case, lc(fi (x1, . . . , xk , 0, . . . , 0); xk) is not always
invertible in Op, hence property (n-7) does not always apply.

Hence, it is not generically true that
〈f1, . . . , fj , . . . , fn〉 = 〈f1, . . . , f ′j , . . . , fn〉. That is, substituting f ′j for fj
does not necessarily preserve intersection multiplicity.
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Generalizing Fulton’s Algorithm (1/3)
Algorithm 2: Generalized Fulton’s Algorithm

1 Function imn(p; f1, . . . , fn)
Input: Let: x1 � . . . � xn, n ≥ 2

1 f1, . . . , fn ∈ K[x1, . . . , xn] such that f1, . . . , fn form a regular sequence in OAn,p or some fi is a unit in
OAn,p.

Output: Im(p; f1, . . . , fn) or Fail, where p ∈ An is the origin

2 if fi (p) 6= 0 for any i=1,. . . ,n then
3 return 0

4 for i = 1, . . . , n do
5 for j = 1, . . . , n − 1 do

6 r
(i)
j ← moddeg(fi , xj)
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In this first section of our extension of Fulton’s algorithm, we check if
any of the polynomials do not vanish at p. That is, we check the base
case of the algorithm.

We also compute the n × n − 1 matrix of modular degrees, analogous
to computing r , s in the bivariate algorithm.

Example

Let f1, f2, f3 ∈ K[x , y , z ] be given by
f1 = x2, f2 = (x + 1)y + x3, f3 = y2 + z + x3. The matrix r computed in
the first section of our generalization is:

r =

2 0
3 1
3 2

 ,
where the i-th row corresponds to the polynomial fi and the j-th coloumn
corresponds to the variable xj . Hence, (i , j)-th entry is the modular degree
of fi with respect to xj .
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Generalizing Fulton’s Algorithm (2/3)
Algorithm 3: Generalized Fulton’s Algorithm

7 Function
8 for j = 1, . . . , n − 1 do

9 Reorder f1, . . . , fn−j+1 so that r
(1)
j ≤ . . . ≤ r

(n−j+1)
j

10 m← min(i | r (i)j > 0) or m←∞ if no such i exists

11 if m ≤ (n − j) then

12 for i = m + 1, . . . , n − j + 1 do

13 d ← r
(i)
j − r

(m)
j

14 Lm ← lc(fm(x1, . . . , xj , 0, . . . , 0); xj)
15 Li ← lc(fi (x1, . . . , xj , 0, . . . , 0); xj)
16 if Lm(p) 6= 0 then
17 f ′i ← Lmfi − xdj Li fm

18 else if Lm | Li then
19 f ′i ← fi − xdj

Li
Lm

fm

20 else
21 return Fail

22 return imn(p; f1, . . . , fm, f
′
m+1, . . . , f

′
n−j+1, . . . , fn)
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In the second section, we seek to transform the matrix of modular
degrees into a triangular shape.

Namely, we seek to transform the matrix of modular degrees so that
all entries above the anti-diagonal are −∞.

This is done through reordering polynomials by modular degree and
applying (n-7) to rewriting polynomials in a way that decreases their
modular degree with respect to xj .

Example

Let f1, f2, f3 ∈ K[x , y , z ] be as above, given by
f1 = x2, f2 = (x + 1)y + x3, f3 = y2 + z + x3. Write

f ′2 := f2 − xf1 = (x + 1)y + x3 − x3 = (x + 1)y ,

and
f ′3 := f3 − xf1 = y2 + z + x3 − x3 = y2 + z .
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Example (continued)

Redefine f2 := f ′2 and f3 := f ′3 . Hence, we consider
f1 = x2, f2 = (x + 1)y , f3 = y2 + z . The matrix r computed in the first
section is now:

r =

 2 0
−∞ 1
−∞ 2

 ,
and after reordering f1, f2, f3 by modular degree we have
f1 = (x + 1)y , f2 = y2 + z , f3 = x2, with matrix of modular degrees:

r =

−∞ 1
−∞ 2

2 0

 .
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Now we apply the same procedure to reduce the modular degree with
respect to y .

Example (continued)

Consider f1 = (x + 1)y , f2 = y2 + z , f3 = x2. Write

f ′2 := (x + 1)f2 − yf1 = (x + 1)y2 + (x + 1)z − (x + 1)y2 = (x + 1)z .

Redefining f2 := f ′2 and reordering by modular degree in y , we have
f1 = (x + 1)z , f2 = (x + 1)y , f3 = x2, and the matrix of modular degrees is
now:

r =

−∞ −∞
−∞ 1

2 0

 .
Notice (n-7) applies when computing f ′2 above since x + 1 is invertible
in OAn,p.
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Generalizing Fulton’s Algorithm (3/3)
Algorithm 4: Generalized Fulton’s Algorithm

23 Function

24

25 mn ← max(m ∈ Z+ | fn(x1, 0, . . . , 0) ≡ 0 mod 〈xm1 〉)
26 for i = 1, . . . , n − 1 do
27 qi ← quo(fi (x1, . . . , xn−i+1, 0, . . . , 0), xn−i+1; xn−i+1)

28 return
29 imn(p; q1, f2, . . . , fn)
30 + imn−1(p; q2(x1, . . . , xn−1, 0), . . . , fn(x1, . . . , xn−1, 0))
31 +

32
...

33 +im2(p; qn−1(x1, x2, 0, . . . , 0), fn(x1, x2, 0, . . . , 0))
34 +mn
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Example (continued)

Applying the splitting lemma on f1 = (x + 1)z , f2 = (x + 1)y , f3 = x2 gives:

Im(p; f1, f2, f3)

= Im(p; x + 1, f2, f3) + Im(p; z , f2, f3)

= Im(p; x + 1, f2, f3) + Im(p; z , x + 1, f3) + Im(p; z , y , f3)

= 0 + 0 + 2.

Marc Moreno Maza, Ryan Sandford Extending Fulton’s Algorithm November 4, 2021 26 / 30



Table of Contents

1 Fulton’s Bivariate Intersection Multiplicity Algorithm

2 Overview

3 Preliminaries

4 Generalized Fulton’s Algorithm

5 Conclusion

Marc Moreno Maza, Ryan Sandford Extending Fulton’s Algorithm November 4, 2021 27 / 30



Conclusion

Fulton’s algorithm generalizes to a partial, standard basis free,
algorithm for computing intersection multiplicities in the n-variate
case.

Additionally, an observation made in the paper allows us to compute
the intersection multiplicity of triangular regular sequences
immediately, by means of evaluation.

This observation also suggests a new approach to computing
intersection multiplicities without the use of standard bases, by
decomposing the input into triangular regular sequences.
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