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Introduction

Take f1,..., fnek|xy,...,x,] suchthat V(fi,..., f,) is zero-dimensional and fix some
p € V(fi,...,fn). The intersection multiplicity Im(p; fi,..., f.) gives the weight at
the point p of the weighted sum in Bézout's Theorem.

MAGMA supports the computation of intersection multiplicities for two projective curves
while SINGULAR provides support for the n-variate case, but only at the origin. In
2020, MAPLE introduced support for the computation of intersection multiplicities in
the n-variate case at any point. By applying an algorithmic criterion, the MAPLE imple-
mentation seeks to reduce to the bivariate case, a case which has a well-known solution
given by Fulton's algorithm. Unfortunately, this reduction is not always possible.

Following the design goals of MAPLE's intersection multiplicity algorithm, we seek to
design an algorithm which can provide an alternative to intersection multiplicity algo-
rithms which use standard bases (a Grobner basis with a local term ordering). That is,
we wish to compute intersection multiplicities in the n-variate case, without computing a
standard basis of fi,..., f,. Further, we aim to design an algorithm that can in practice,
compute intersection multiplicities at any point, rational or not.

Rather than reducing to the bivariate case to apply Fulton’'s algorithm, we extend Fulton's
algorithm to a partial intersection multiplicity algorithm in the n-variate case. We further
extend our generalization of Fulton's algorithm to handle any point as input, rational or

not, by encoding such points in a zero-dimensional regular chain.

Algorithm

Definition 1 (Local Ring). Take p € A", we define the local ring at p as

Opnp = {5 | f,gek|xy,...,x,] where g(p) + O}.

o foeklzy, ..., x,]. We define the
., I, at p as the dimension of the local ring at p modulo
., fn in the local ring at p, as a vector space over k. That is,

m(p: iy f) = dimi (Opoy [ (frv -, f))

Definition 3 (Modular Degree). Take p € A", v € {xy,...,2z,}, and f e k[xy,..., z,]
where 1 > ... > x,,. We define the modular degree of f at p with respect to v as

degv (f mod <V<U>p>)>

where V,,, = {x; - pj|lz;<v}. If Vi, = & then the modular degree of f at p with
respect to v is simply the degree of f with respect to v. If p is the origin, we denote by
moddeg( f,v) the modular degree of f at v.

Definition 2 (Intersection Multiplicity). Let f,.
intersection multiplicity of fi, ..
the ideal generated by f1, ..

Theorem 1 (Generalization of Fulton's Properties). Let p = (p1,...,pn) € A" and

fl,...,ank[CEl,...,CEn].

., fn) is a non-negative integer iff V(fi,..., f,) is zero-dimensional.

) =00 pEV(fiyeen, fo),

., fn) is invariant under affine changes of coordinates on A",

(n-4) Im(p; f1,..., fu) =1m(p; foqr)s-- -+ fotn))-

Azp=pn)™)=my-...-m, formy,...,m, eN.

.,gh) =Im(p; fi,...,9) +Im(p; fi,...,h) for any g, h € k[zy,..., z,]
such that fi,..., gh is a regular sequence in Opn .

o) =Im(p; fis.. o fu+g) forany g e (fi, ..., fo1).
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Algorithm 1: Generalized Fulton’s Algorithm

Function im,(p; f1,..., f,)
Input: Let: 1> ... > x,,.

1. p € A" the origin.
2. fi,..., faneK[x1,...,2,] such that fi,..., f, form a regular sequence in Oan, or at least one such f; is a unit in Opn .

Output: Im(p; fi,..., f,) or Fail
if fi(p)+0foranyi=1,....,n then
~ return 0

if »n =1 then
 return max(m e Z"* | f,, =0 mod (z7"))

/* Compute multiplicity */

for:=1,....ndo
L for j=1,....n-1do

L r§i) < moddeg( f;, ;)

for )=1,....n—-1do

Reorder fi,..., fu—ji1 so that 7“§1) <...<

<T§n—j+1)
m < min(7 | 'ry) > () or m « oo if no such i exists
if m < (n-7) then
fori=m+1,...n—-7+1do

d < ’ry) — rﬁm)

Ly, < le(fm(21,...,25,0,...,0);2,)

Li < le(fi(zy,...,2;,0,...,0);2,)

if L,,(p)# 0 then

L fi < Linfi- x?Lifm

else if L, | L; then

e fma

else
| return Fall

return 1mn(p7 fla .. '7fm7 Tln+17 sy ;L_]’+17 .. 7fn)

for:=1,....n—1do

@i < quo (fi(w1,. o, @nin1, 0,000, 0), it Tninn)
return

imy, (p; g1, fo, -5 fn)

- irnn—l(p; QQ(xlp IO 73771—170)7 Tt fn(xla I 73371—170))
+

+1m2(p7 qn_l(ﬁlﬁ'l,ﬂfg, 07 s 70)7 fn(ﬂfl, L2, 07 s 70))
+1m1(p7 fn(xlv 07 10 C 70))

The generalization of Fulton's algorithm is best understood by examining the matrix of
modular degrees corresponding to fi,..., f,. The main loop of the algorithm terminates
when all entries above the anti-diagonal are equal to —oco. In fact, this condition is
exactly what we must enforce in order to split the intersection multiplicity computation
into a sum of smaller intersection multiplicity computations and make progress towards
termination.

Definition 4 (Matrix of Modular Degrees). The matrix of modular degrees of fi,..., f, €
k[z1,...,2,] is the matrix whose i-th, j-th entry is moddeg( fi, x;).

Lemma 1. Let fi,..., f, ek[xy,...,2,] forming a regular sequence in Opn,, where p is
the origin. Let V ={xy,...,x,} andlet V., = {x; € V | x; > v}. Define J: {1,...,n} —
{1,...,n} such that J(i) = n -7+ 1. Assume moddeg(f;,v) < O holds for all 7 =

I,...,n=TandallveV,, . Then, thevariable z ;) divides fi(x1,...,23:,0,...,0).
Moreover, if g; denotes the quotient of fi(x1,...,23;,0,...,0) by ;4 then we have:
Im(p7 fl?"'?fn)::[m(p; Q17f27°"7fn)+:[m(p;:EfanZ?'"?fn)

+ -I—Iﬂ’l(p7 Zl?n,...,ZEJ(Z')H,C]Z',le,...,fn)-I-...

7Qn—17fn) + My,
where m,, = max(m € Z* | f,(21,0,...,0) =0 mod (z1")).

In order to apply the lemma, we must first rewrite fi,..., f,, so that the matrix of modu-
lar degrees has all entries above the anti-diagonal equal to —oo. We iterate column-wise,
and hence the j-th iteration corresponds to the variable z;. In the j-th iteration we
choose a pivot element f,,,, with minimal modular degree in z;, and use f,, to reduce the
modular degree in x; of the other polynomials using only operations permissible by (7-7).

+ Im(p; xp, Tpo, ...

The algorithm is partial, meaning it doesn’t always succeed. This is because (n-7) cannot
generically be used to reduce modular degrees when n > 2. When (n-7) is applicable,
the algorithm proceeds as expected. When (n-7) is not applicable, we return Fail to the
user. In particular, suppose we wish to replace some f; with

fl=le(f(xy, .. 25, 0,...,0);2) fi — lec(fi(xl, oy Ty 0,0.0,0): 1) fins

for some 7, m, k,d € N,i + m. Unlike the bivariate case, lc( f,(z1,...,2%,0,...,0);xz)
is not always invertible in Og» ,,, hence property (n-7) does not always apply. Hence, it is
not generically true that (fi,..., fi,..., fa) = (f1,---, f/,..., fu). Thatis, substituting
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J; for f; does not necessarily preserve intersection multiplicity and thus, return Fail.

Example 1. Llet fi, fo, f3 € k[x,y,z] be given by f1 = 2% fo = (x + 1)y + 27, f5 =
y?> + z + 3. The algorithm first computes the below matrix 7 of modular degrees:

o
r=|131]1,
3 2
where the -th row corresponds to the polyr;omi‘al f; and the j7-th column corresponds to
the variable ;. Hence, (i, j)-th entry is the modular degree of f; w.r.t. z;. Write:

fo=fo—xfi=(x+Dy+2’—2° = (x+1)y, and fi:= fs3-afi =y>+z+2°-2° =y’ +2.
2 3

Redefine f; := f] and f3; := f]. Hence, we consider f; = 2%, fo = (z + 1)y, f3 = y* + 2.
The matrix » computed in the first section is now:

s
r=|-o0 11,
—00 2
and after reordering f1, fo, f3 by modular c-egree V\;e have fi = (x+1)y, fo = y*+z, f3= 27,

with matrix of modular degrees:
o
r=\|-oo 2
2 0
Consider fi=(z+ 1)y, fo=y*+ 2z, f3= :1:5. Writ‘e

fo=(x+ D fo-yfi=(@+ D)+ (z+Dz-(x+1)y° = (x+1)z.

Redefining f; := f; and reordering by modular degree in y, we have f; = (z + 1)z, fo =
(z + 1)y, f3 = 22, and the matrix of modular degrees is now:

,_OO _OO_
r=]l-oco0 1
2 0

Applying the Lemma on f; = (z + 1)z, fo = (z + 1)y, f3 = 2° gives:

Im(p7 f17f27f3) = Im(p7 T + 17f27f3) +Im(p7 2, L+ 17f3) +Im(p7 Z7y7f3)
=0+0+2.

Implementation and Experimentation

We extend our algorithm to handle a zero-dimensional regular chain as input, rather
than just a point, allowing it to compute intersection multiplicities at any point, rational

or not. Additionally, we reimplement MAPLE's IntersectionMultiplicity command to

combine the generalization of Fulton's algorithm with the partial intersection multiplicity
algorithm already in MAPLE, forming a hybrid intersection multiplicity algorithm. Lastly,
we modify the TriangularizeWithMultiplicity command to support this new implementa-
tion; a command which first solves the system of polynomial equations and then maps
the IntersectionMultiplicity command to each solution.

The first (respectively second) table below compares the generalization of Fulton's
algorithm to the existing intersection multiplicity algorithm in MAPLE using the
IntersectionMultiplicity command (respectively TriangularizeWithMultiplicity). For the
TriangularizeWithMultiplicity command, Success Ratio denotes the number of intersec-
tion multiplicities successfully computed over the total number of regular chains returned.

All tests are un in serial using MAPLE 2021.2.
System Specifications Fulton MAPLE System Specifications Fulton MAPLE
System | n  Ordering Point Im  CPU Time Im CPU Time System || n Ordering Success Ratio CPU Time | Succeess Ratio CPU Time
cbmsl |3 ax>y>z (0,0,0) FAIL 32ms ERROR 16ms cbmsl | 3 T>yY>z 10/11 641ms ERROR 218ms
cbms2 |3 ax>y>z (0,0,0) FAIL 31ms ERROR 31ms cbms2 | 3 >y >z 1/2 11.55s ERROR 422ms
mth191 |3 z>y>z (0,1,0) 4 31ms ERROR 1.47s mth191 | 3 T>y>z 8/8 609ms ERROR 2.45s
QOjika2 |3 x>y>z (0,0,1) 2 63ms 2 1.53s Ojika2 || 3 T>y>z 4/4 219ms 4/4 5.38s
Ojika2 |3 xz>y>z (1,0,0) 2 62ms 2 1.48s Ojika3 | 3 rT>y>z 2/2 62ms 2/2 5.02s
Ojika3 |3 x>y>=z (0,0,1) 4 31ms 4 1.62s Ojikad | 3 x>y >z 3/5 438ms ERROR 906ms
Ojika3 |3 z>y>=z (-2,5.1) 2 31ms 2 1.02s Ojika4 | 3 T>z>y 5/5 500ms ERROR 3.41s
Ojikad |3 =z>y>=z (0,0,10) FAIL 16ms 3 2.00s Caprasse | 4 T1>To> ... 4/15 1.58s NR >2000s
Ojikad |3 x>z>y (0,10,0) 3 63ms 3 4.02s Caprasse || 4 x4 > 29> 21 > I3 12/15 4.48s ERROR 14.09s
DZ1 4 x1>...>x4 (0,0,0,0) |FAIL 31ms ERROR 16ms DZ1 4 T1>To > ... NR >2000s ERROR 313ms
DZ2 3 z>z>y (0,0,-1) 16 78ms ERROR 16ms DZ2 3 r>z>y 2/2 172ms ERROR 47ms
Solotarev | 4 x1>...> x4 (g, -1,5, —‘21—; 2 110ms 2 1.36s Solotarev || 4 Ty > Ty > ... 4/4 453ms 4/4 3.47s




