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What Are Intersection Multiplicities

Intersection multiplicities generalize the notion of multiplicity of a
root for more than one polynomial.

When an algebraic set has a singular point, local approximation at
that point by a linear space is not possible.

When this occurs, tools like the tangent cone and intersection
multiplicity allow us to understand the behaviour of the algebraic set
at that singularity.

In a sense, intersection multiplicities tell us how complex a singularity
is.
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Example

Figure: Im
(
(0, 0); y − x , x3 + xy2 + x2 − y2

)
= 3
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Standard Basis Free Algorithms for Computing Intersection
Multiplicities

Recently, in CASC 2021 [1], a new standard basis free approach was
investigated, where the authors present a partial algorithm extending
Fulton’s bivariate intersection multiplicity algorithm to the n-variate
setting.

Since this algorithm is a partial algorithm a natural question to ask, is
“when does it succeed?”.

Without running the procedure, it is difficult to tell whether a given
input system will cause the algorithm to fail,

This is because it is difficult to predict how a system will be rewritten
without running the procedure itself.
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Our Contribution

We investigated several properties of polynomial systems which we
believe may correlate with the success/failure of the generalization of
Fulton’s algorithm.

We then randomly generated systems of polynomial equations,
extracted these properties and trained several classifiers on them.

The results suggest that some of these properties can indeed provide
an indication of whether the generalization of Fulton’s algorithm will
succeed on a given system of polynomial equations.
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Generating Systems

Using Maple′s randpoly command we generated over 20,000
systems.

The algorithm also requires the input systems form a regular sequence.

This constraint is highly technical and is discussed in more detail in
the appendix of our corresponding paper.

Using the is regs command in Singular, we removed all systems
which were not regular sequences.

This left 2271 valid systems to run the algorithm on.

The systems are class imbalanced, the algorithms succeeds on 792 of
the sample systems and fails on 1479 sample systems.
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Overview

Data Preparation:
▶ Removed duplicates,
▶ Transformed raw data into feature sets,
▶ Standardized features for regularization,
▶ Stratified data by success/fail due to class imbalance, and
▶ 7:3 split of training and test data.

Model Selection:
▶ Selected four supervised-learning methods + hyper-parameters,
▶ Conducted a 2-fold cross-validation using a grid-search on features,

hyper-parameters, and voting methods using the training data, scored
according to average ROC AUC score from the validation sets

▶ Best models of each supervised-learning method were trained on all the
seen data and then tested with the unseen data, and a number of
classification metrics were produced for model comparison
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Feature Sets

Polynomial Coefficients (Näıve Approach)
▶ the most obvious feature set, completely determines the algorithm
▶ has the drawback of having a very high dimension while not having any

reasonable reduction

Number of Vanishing Terms & Modular Degree
▶ the number of vanishing terms describe the number of “bad” terms in

a polynomial and the modular degree describes how difficult it is for
the algorithm to remove these “bad” terms.

▶ due to this, it is quite likely that most of the information needed in this
problem is contained in these features, making it the better feature set
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Symmetries and Voting on Permutations

The implementation of the generalized Fulton’s algorithm is
symmetric:

Let σ be a permutation of the set {1, . . . , n}, then

Im(p; f1, . . . , fn) = Im
(
p; fσ(1), . . . , fσ(n)

)
This is a property that our model should have as well.
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Symmetries and Voting on Permutations (cont.)

To achieve this, consider a voting method called vote that produces a
single value from a set of values

Examples include:
▶ maximum value,
▶ minimum value, and
▶ average value

For a trained classifier C , we define a new classifier Cvote that given
by:

Cvote(f1 . . . , fn) = vote({C (fσ(1), . . . , fσ(n)) : σ ∈ Sym(n)})

Note that Cvote is indeed symmetric.
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Model #1: Logistic Regression

1

1 + e−(b⃗·x⃗)

Classifier:

sklearn.linear model.LogisticRegression

Fixed Parameters:

Solver: Saga (for compatibility with L1 penalty)

Hyper-parameters:

Penalty: {L1, L2}
Regularization: {1, 0.1, 0.01}
Intercept: {Include, Exclude}
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Model #2: Support Vector Machine

w⃗ · φ(x⃗)− b

Classifier:

sklearn.svm.SVC

Fixed Parameters:

N/A

Hyper-parameters:

Kernel: {Polynomial, Radial Basis Function, Sigmoid}
Regularization: {1,0.1,0.01}
Gamma:{0.1, 0.01, 0.001}
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Model #3: AdaBoost (with Tree)

N∑
i=1

αti (x⃗)

Classifier:

sklearn.ensemble.AdaBoostClassifier

Fixed Parameters:

sklearn.tree.DecisionTreeClassifier

Hyper-parameters:

Total Estimators: {10, 50, 100, 200}
Learning Rate: {1, 0.1, 0.01}
Tree Depth: {1, 5, 10}
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Model #4: Gradient Boosting (with Tree)

N∑
i=1

αti (x⃗)

Classifier:

sklearn.ensemble.GradientBoostingClassifier

Fixed Parameters:

Loss Function: Exponential

Hyper-parameters:

Total Estimators: {10, 50, 100, 200}
Learning Rate: {1, 0.1, 0.01}
Tree Depth: {5, 6, 7, 8, 9}
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Summary of Model Selection
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Model #1: Logistic Regression

Cross Validation Results:

Penalty Regularization Intercept Feature Set Voter CV Score
L2 0.01 Excluded No. Terms + Mod. Degree Average 0.66917888

Test Results:

Accuracy: 0.623719

Precision: 0.471810

Recall: 0.668067

F-Measure: 0.553043

ROC AUC: 0.634034
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Model #2: Support Vector Machine

Cross Validation Results:

Kernel Regularization Gamma Feature Set Voter CV Score
Radial Basis Function 1 0.1 No. Terms + Mod. Degree Maximum 0.681360

Test Results:

Accuracy: 0.698389

Precision: 0.559701

Recall: 0.630252

F-Measure: 0.592885

ROC AUC: 0.682542
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Model #3: AdaBoost w/ Tree

Cross Validation Results:

Total Estimators Learning Rate Tree Depth Feature Set Voter CV Score
100 0.01 5 No. Terms + Mod. Degree Maximum 0.691113

Test Results:

Accuracy: 0.667643

Precision: 0.518771

Recall: 0.638655

F-Measure: 0.572505

ROC AUC: 0.660901
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Model #4: Gradient Boosting w/ Tree

Cross Validation Results:

Total Estimators Learning Rate Tree Depth Feature Set Voter CV Score
200 0.01 5 No. Terms + Mod. Degree Maximum 0.705638

Test Results:

Accuracy: 0.737921

Precision: 0.641148

Recall: 0.563025

F-Measure: 0.599553

ROC AUC: 0.697243
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Summary of Results

Classifier Accuracy Precision Recall F-Measure ROC AUC
logreg 0.623719 0.471810 0.668067 0.553043 0.634034

svm 0.559701 0.592885 0.630252 0.592885 0.682542

adaboost tree 0.518771 0.572505 0.638655 0.572505 0.660901

xgboost 0.737921 0.641148 0.563025 0.599553 0.697243
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Summary of Results (cont.)
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Summary of Results (cont.)
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