
Towards a Generalization of Fulton’s Intersection
Multiplicity Algorithm

Ryan Sandford

Department of Computer Science, The University of Western Ontario, Canada

April 25, 2022

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 1 / 58



Contributions

We extend Fulton’s bivariate intersection multiplicity algorithm to a
partial intersection multiplicity algorithm in the n-variate setting.

We extend the generalization of Fulton’s algorithm to handle points
with non-rational coordinates by encoding such points in a
zero-dimensional regular chain.

We implement both versions of the generalizatiom of Fulton’s
algorithm in Maple, combining the latter version with the algorithm
of [10] to form a hybrid procedure.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 2 / 58



Table of Contents

1 Introduction

2 Generalizing Fulton’s Algorithm

3 Encoding Points With Algebraic Coordinates Using Regular Chains

4 Implementation

5 Experiments

6 Conclusion

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 3 / 58



What is Intersection Multiplicity (1/7)

If p is a root of f a univariate polynomial in K[x ], for some field K,
the multiplicity of f is the largest m ∈ N such that we can write
f = (x − p)mg for some g ∈ K[x ].

When p is a solution to f1, . . . , fn ∈ K[x1, . . . , xn], a similar notion can
be defined in this more general setting, called intersection multiplicity.

In a sense, intersection multiplicity is the number of times a system of
polynomial equations passes through a point, accounting for tangency.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 4 / 58



What is Intersection Multiplicity (2/7)

Figure: Im
(
(0, 0); y − x , y − x2

)
= 1

Im
(
(1, 1); y − x , y − x2

)
= 1

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 5 / 58



What is Intersection Multiplicity (3/7)

Figure: Im
(
(0, 0); y , y − x2

)
= 2

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 6 / 58



What is Intersection Multiplicity (4/7)

Figure: Im
(
(0, 0); y − x + 1, y − x2

)
= 0

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 7 / 58



What is Intersection Multiplicity (5/7)

Figure: Im
(
(0, 0); x3 + xy 2 + x2 − y 2, y − x

)
= 3

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 8 / 58



What is Intersection Multiplicity (6/7)

Figure: Im
(
(0, 0); (x2 + y 2)2 + 3x2y − y 3, (x2 + y 2)3 − 4x2y 2

)
= 14

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 9 / 58



What is Intersection Multiplicity (7/7)
Let K be an algebraically closed field and let An denote affine n space
over K.

We will assume all algebraic sets (varieties) are irreducible.

Definition (Local Ring)

Take p ∈ An, we define the local ring at p as

OAn,p :=

{
f

g
| f , g ∈ K[x1, . . . , xn] where g(p) 6= 0

}
.

Definition (Intersection Multiplicity)

Let f1, . . . , fn ∈ K[x1, . . . , xn]. We define the intersection multiplicity of
f1, . . . , fn at p as the dimension of the local ring at p modulo the ideal
generated by f1, . . . , fn in the local ring at p, as a vector space over K.
That is,

Im(p; f1, . . . , fn) := dimK(OAn,p /〈f1, . . . , fn〉) .

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 10 / 58



Algorithms for Computing Intersection Multiplicities (1/3)

In Algebraic Curves [5], William Fulton proved an algorithm for
computing the intersection multiplicity of two bivariate, planar curves.

Fulton’s approach uses seven properties to elegantly rewrite the input
system until the intersection multiplicity can either be computed or
expressed as the sum of smaller intersection multiplicities.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 11 / 58



Algorithms for Computing Intersection Multiplicities (1/2)

The first algorithmic solution in the general setting was proposed by
Mora and is described in [7].

Mora’s solution is implemented in Singular’s iMult[6] command
and makes use of standard bases (Gröbner bases) to compute
intersection multiplicities.

The iMult command is limited to the origin, and hence, cannot
compute intersection multiplicities at points other than the origin.

Additionally, standard bases are difficult to compute in practice. The
lengthy nature of standard basis computations therefore limits iMult

to only those examples for which a standard basis can be obtained.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 12 / 58



Algorithms for Computing Intersection Multiplicities (2/2)

A standard basis-free intersection multiplicity algorithm was
investigated in CASC 2012 and 2015 [8, 1, 10], which applies an
algorithmic criterion based on tangent cones to reduce computations
to the bivariate case, where Fulton’s algorithm can then be applied.

The IntersectionMultiplicity command, introduced in Maple
2020, implemented this algorithm.

Unfortunately, the criterion discovered in [8, 1, 10] does not always
apply, and hence, the IntersectionMultiplicity command may
fail.

We will refer to this algorithm as the algorithm of Vrbik et al.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 13 / 58



Our Approach

Our approach to computing intersection multiplicities without the use
of standard bases, was to extend Fulton’s algorithm to the n-variate
case, rather then reducing to the bivariate case.

In doing so, we successfully developed a partial algorithm which
generalizes the techniques used in Fulton’s algorithm to the n-variate
setting.

Our generalization is not complete as Fulton’s algorithm relies on a
property which is not generically true beyond the bivariate case.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 14 / 58



Fulton’s Properties

Theorem (Fulton’s Properties)

Let p = (p1, p2) ∈ A2(K) and f , g ∈ K[x , y ].

(2-1) Im(p; f , g) is a non-negative integer when V(f ) and V(g) have no
common component at p. When V(f ) and V(g) do have a
component in common at p, Im(p; f , g) =∞.

(2-2) Im(p; f , g) = 0 if and only if p 6∈ V(f , g).

(2-3) Im(p; f , g) is invariant under affine changes of coordinates on A2.

(2-4) Im(p; f , g) = Im(p; g , f ).

(2-5) Im(p; (x − p1)m1 , (y − p2)m2) = m1m2 for m1,m2 ∈ N.

(2-6) Im(p; f , gh) = Im(p; f , g) + Im(p; f , h) for any h ∈ K[x , y ] such

that Im(p; f , gh) ∈ N.

(2-7) Im(p; f , g) = Im(p; f , g + hf ) for any h ∈ K[x , y ].

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 15 / 58



Fulton’s Algorithm
Algorithm 1: Fulton’s algorithm

1 Function im2(f , g)
Input: Let: x � y

1 f , g ∈ K[x , y ] such that gcd(f , g)(0, 0) 6= 0.

Output: Im((0, 0); f , g)

2 if f (0, 0) 6= 0 or g(0, 0) 6= 0 then
3 return 0

4 r ← degx (f (x , 0))
5 s ← degx (g(x , 0))

6 if r > s then
7 return im2(g , f )

8 if r < 0 then /* y | f */

9 write g(x , 0) = xm(am + am+1x + . . .)
/* im2(f , g) = im2(quo(f , y ; y), g) + im2(y , g) */

10 return im2(quo(f , y ; y), g) + m

11 else
12 g ′ = lc(f (x , 0)) · g − (x)s−r lc(g(x , 0)) · f
13 return im2(f , g ′)

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 16 / 58



Table of Contents

1 Introduction

2 Generalizing Fulton’s Algorithm

3 Encoding Points With Algebraic Coordinates Using Regular Chains

4 Implementation

5 Experiments

6 Conclusion

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 17 / 58



Regular Sequences

An assumption of Fulton’s algorithm states that the input polynomials
must not have a common factor which vanishes at p, where p ∈ A2 is
the point which we wish to compute the intersection multiplicity over.

To generalize this condition we must introduce the notion of a regular
sequence.

Roughly, this means given f1, . . . , fn as input, no fi is a unit, zero, or a
zero-divisor modulo the ideal generated by any subset of the
remaining input polynomials, in the local ring at p.

Theorem

Let I be the ideal generated by f1, . . . , fn ∈ K[x1, . . . , xn] and define
V = V(I ). Suppose V is non-empty and irreducible, then for any p ∈ V,
dim(V) = 0 if and only if f1, . . . , fn is a regular sequence in OAn,p.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 18 / 58



Generalizing Fulton’s Properties

Theorem (Fulton’s Properties)

Let p = (p1, . . . , pn) ∈ An and f1, . . . , fn ∈ K[x1, . . . , xn].

(n-1) Im(p; f1, . . . , fn) is a non-negative integer if and only if V(f1, . . . , fn) is
zero-dimensional.

(n-2) Im(p; f1, . . . , fn) = 0 if and only if p 6∈ V(f1, . . . , fn).

(n-3) Im(p; f1, . . . , fn) is invariant under affine changes of coordinates on
An.

(n-4) Im(p; f1, . . . , fn) = Im
(
p; fσ(1), . . . , fσ(n)

)
.

(n-5) Im(p; (x1 − p1)m1 , . . . , (xn − pn)mn) = m1 · . . . ·mn for
m1, . . . ,mn ∈ N.

(n-6) Im(p; f1, . . . , gh) = Im(p; f1, . . . , g) + Im(p; f1, . . . , h) for any

g , h ∈ K[x1, . . . , xn] such that f1, . . . , gh is a regular sequence in OAn,p.

(n-7) Im(p; f1, . . . , fn) = Im(p; f1, . . . , fn + g) for any g ∈ 〈f1, . . . , fn−1〉.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 19 / 58



Modular Degrees
In Fulton’s algorithm, we considered
r = degx (f (x , 0)) , s = degx (g(x , 0)) for f , g ∈ K[x , y ].

Using r , s we then determined an appropriate rewrite rule to apply to
f , g .

The following definition generalizes this notion to the n-variate case.

Definition (Modular Degree)

Take p ∈ An, v ∈ {x1, . . . , xn}, and f ∈ K[x1, . . . , xn] where x1 � . . . � xn.
We define the modular degree of f at p with respect to v as

degv (f mod 〈V<v ,p〉) ,

where V<v ,p = {xi − pi |xi ≺ v}. If V<v ,p = ∅ then the modular degree of
f at p with respect to v is simply the degree of f with respect to v .

Often we will assume p is the origin, in which case we write
moddeg(f , v) to denote the modular degree of f at v .

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 20 / 58



Splitting

The following lemma uses modular degrees to generalize the
conditions of the splitting (yellow) case in Fulton’s algorithm.

Lemma

Let f1, . . . , fn ∈ K[x1, . . . , xn] forming a regular sequence in OAn,p where p
is the origin. Let V = {x1, . . . , xn} and let V>v = {xi ∈ V | xi > v}.
Define J : {1, . . . , n} → {1, . . . , n} such that J(i) = n − i + 1.

Assume moddeg(fi , v) < 0 holds for all i = 1, . . . , n − 1 and all

v ∈ V>xJ(i) . Then, we have xJ(i) | fi (x1, . . . , xJ(i), 0, . . . , 0). Moreover, if

we define qi = quo(fi (x1, . . . , xJ(i), 0, . . . , 0), xJ(i); xJ(i)) then,

Im(p; f1, . . . , fn) = Im(p; q1, f2, . . . , fn) + Im(p; xn, q2, . . . , fn)
+ . . . + Im

(
p; xn, . . . , xJ(i)+1, qi , fi+1, . . . , fn

)
+ . . .

+ Im(p; xn, xn−1, . . . , qn−1, fn) + mn

where mn = max(m ∈ Z+ | fn(x1, 0, . . . , 0) ≡ 0 mod 〈xm1 〉).

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 21 / 58



Splitting Continued
Simply put, the above lemma states when the matrix of modular
degrees has a triangular shape we may split the intersection
multiplicity into smaller computations.

Example

Let f1, f2, f3 ∈ K[x1, x2, x3], let x1 � x2 � x3 and let p ∈ A3 be the origin.
Take f1 = x3(x2 + 1), f2 = x32 + x3, f3 = x23 + x32 + x41 (x1 + 1). Write R the
matrix of modular degrees such that Ri ,j = moddeg(fi , xj)

R =

−∞ −∞ 1
−∞ 3 1

4 3 2

 ,

Im(p; f1, f2, f3) = Im(p; x2 + 1, f2, f3) + Im(p; x3, f2, f3)

= Im(p; x2 + 1, f2, f3) + Im
(
p; x3, x

2
2 , f3

)
+ Im(p; x3, x2, f3)

= 0 + 8 + 4

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 22 / 58



Why The Generalization is Not Complete

Assume p is the origin.

In the bivariate case for polynomials f , g ∈ K[x , y ], one step of the
algorithm may replace g with g ′ := lc(f (x , 0))g − xd lc(g(x , 0))f for
some d ∈ N. This preserves intersection multiplicity since
lc(f (x , 0)) ∈ K and hence 〈f , g〉 = 〈f , g ′〉, i.e. property (2-7) applies.

When we generalize this, say with polynomials
f1, . . . , fn ∈ K[x1, . . . , xn], we replace some fi with

f ′i := lc(fm(x1, . . . , xk , 0, . . . , 0); xk)fi−xdk lc(fi (x1, . . . , xk , 0, . . . , 0); xk)fm,

for some i ,m, k , d ∈ N, i 6= m.

Unlike the bivariate case, lc(fm(x1, . . . , xk , 0, . . . , 0); xk) is not always
invertible in OAn,p, hence property (n-7) does not always apply.

Hence, it is not generically true that
〈f1, . . . , fi , . . . , fn〉 = 〈f1, . . . , f ′i , . . . , fn〉. That is, substituting f ′i for fi
does not necessarily preserve intersection multiplicity.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 23 / 58



Generalizing Fulton’s Algorithm (1/3)
Algorithm 2: The Generalization of Fulton’s Algorithm

1 Function imn(p; f1, . . . , fn)
Input: Let: x1 � . . . � xn.

p ∈ An the origin.
f1, . . . , fn ∈ K[x1, . . . , xn] such that f1, . . . , fn form a regular sequence in OAn,p or at least one such fi
is a unit in OAn,p.

Output: Im(p; f1, . . . , fn) or Fail

2 if fi (p) 6= 0 for any i = 1, . . . , n then
3 return 0

4 if n = 1 then /* Compute multiplicity */

5 return max(m ∈ Z+ | fn ≡ 0 mod 〈xm1 〉)
6 for i = 1, . . . , n do
7 for j = 1, . . . , n − 1 do

8 r
(i)
j ← moddeg(fi , xj)

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 24 / 58



In this first section of our extension of Fulton’s algorithm, we check if
any of the polynomials do not vanish at p. That is, we check the base
case of the algorithm.

We also compute the n × n − 1 matrix of modular degrees, analogous
to computing r , s in the bivariate algorithm.

Example

Let f1, f2, f3 ∈ K[x , y , z ] be given by
f1 = x2, f2 = (x + 1)y + x3, f3 = y2 + z + x3. The matrix r computed in
the first section of our generalization is:

r =

2 0
3 1
3 2

 ,

where the i-th row corresponds to the polynomial fi and the j-th column
corresponds to the variable xj . Hence, (i , j)-th entry is the modular degree
of fi with respect to xj .

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 25 / 58



Generalizing Fulton’s Algorithm (2/3)
9

10 for j = 1, . . . , n − 1 do

11 Reorder f1, . . . , fn−j+1 so that r
(1)
j ≤ . . . ≤ r

(n−j+1)
j

12 m← min(i | r (i)j > 0) or m←∞ if no such i exists

13 if m ≤ (n − j) then

14 for i = m + 1, . . . , n − j + 1 do

15 d ← r
(i)
j − r

(m)
j

16 Lm ← lc(fm(x1, . . . , xj , 0, . . . , 0); xj)
17 Li ← lc(fi (x1, . . . , xj , 0, . . . , 0); xj)
18 if Lm(p) 6= 0 then
19 f ′i ← Lmfi − xdj Li fm

20 else if Lm | Li then
21 f ′i ← fi − xdj

Li
Lm

fm

22 else
23 return Fail

24 return imn(p; f1, . . . , fm, f
′
m+1, . . . , f

′
n−j+1, . . . , fn)

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 26 / 58



In the second section, we seek to transform the matrix of modular
degrees into a triangular shape.

Namely, we seek to transform the matrix of modular degrees so that
all entries above the anti-diagonal are −∞.

This is done through reordering polynomials by modular degree and
applying (n-7) to rewriting polynomials in a way that decreases their
modular degree with respect to xj .

Example

Let f1, f2, f3 ∈ K[x , y , z ] be as above, given by
f1 = x2, f2 = (x + 1)y + x3, f3 = y2 + z + x3. Write

f ′2 := f2 − xf1 = (x + 1)y + x3 − x3 = (x + 1)y ,

and
f ′3 := f3 − xf1 = y2 + z + x3 − x3 = y2 + z .

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 27 / 58



Example (continued)

Redefine f2 := f ′2 and f3 := f ′3 . Hence, we consider
f1 = x2, f2 = (x + 1)y , f3 = y2 + z . The matrix r computed in the first
section is now:

r =

 2 0
−∞ 1
−∞ 2

 ,

and after reordering f1, f2, f3 by modular degree we have
f1 = (x + 1)y , f2 = y2 + z , f3 = x2, with matrix of modular degrees:

r =

−∞ 1
−∞ 2

2 0

 .

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 28 / 58



Now we apply the same procedure to reduce the modular degree with
respect to y .

Example (continued)

Consider f1 = (x + 1)y , f2 = y2 + z , f3 = x2. Write

f ′2 := (x + 1)f2 − yf1 = (x + 1)y2 + (x + 1)z − (x + 1)y2 = (x + 1)z .

Redefining f2 := f ′2 and reordering by modular degree in y , we have
f1 = (x + 1)z , f2 = (x + 1)y , f3 = x2, and the matrix of modular degrees is
now:

r =

−∞ −∞
−∞ 1

2 0

 .

Notice (n-7) applies when computing f ′2 above since x + 1 is invertible
in OAn,p.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 29 / 58



Generalizing Fulton’s Algorithm (3/3)
25

26

27 for i = 1, . . . , n − 1 do
28 qi ← quo(fi (x1, . . . , xn−i+1, 0, . . . , 0), xn−i+1; xn−i+1)

29 return
30 imn(p; q1, f2, . . . , fn)
31 + imn−1(p; q2(x1, . . . , xn−1, 0), . . . , fn(x1, . . . , xn−1, 0))
32 +

33
...

34 +im2(p; qn−1(x1, x2, 0, . . . , 0), fn(x1, x2, 0, . . . , 0))
35 +im1(p; fn(x1, 0, . . . , 0))

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 30 / 58



Example (continued)

Applying the splitting lemma on f1 = (x + 1)z , f2 = (x + 1)y , f3 = x2 gives:

Im(p; f1, f2, f3)

= Im(p; x + 1, f2, f3) + Im(p; z , f2, f3)

= Im(p; x + 1, f2, f3) + Im(p; z , x + 1, f3) + Im(p; z , y , f3)

= 0 + 0 + 2.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 31 / 58



Table of Contents

1 Introduction

2 Generalizing Fulton’s Algorithm

3 Encoding Points With Algebraic Coordinates Using Regular Chains

4 Implementation

5 Experiments

6 Conclusion

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 32 / 58



Fulton’s Algorithm and its Generalization, with
Non-Rational Points

Fulton’s algorithm, and the generalization of Fulton’s algorithm,
assume that the point p is the origin. If p has rational coordinates
then one can easily reduce to the case where p is the origin.

When p does not have rational coordinates, it is often not practical to
represent p by its coordinates. For example, consider any point p
which is a solution to x10000 = 2, y2 = x + 1.

To avoid this, it is natural to encode p as a solution to a system of
polynomial equations, rather than as a list of algebraic numbers.

By encoding p as a solution to a zero-dimensional regular chain, we
can adapt Fulton’s algorithm and its generalization to work with any
point p of the zero set V(F ) of F .

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 33 / 58



Extending the Generalization of Fulton’s Algorithm Using
Regular Chains

In our implementation of the generalization of Fulton’s algorithm, we
extended Algorithm 2 to handle a zero-dimensional regular chain as
input, rather than a point.

A zero-dimensional regular chain is a triangular system of equations
with algorithmic properties which encode a finite set of points.

Since zero-dimensional regular chains may encode many points with
different intersection multiplicities, the new version of the algorithm
may return multiple intersection multiplicities, and the points they
correspond to, encoded in zero-dimensional regular chains.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 34 / 58



Example

Figure: The generalization of Fulton’s algorithm applied to F at a regular chain
encoding 24 points.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 35 / 58



Table of Contents

1 Introduction

2 Generalizing Fulton’s Algorithm

3 Encoding Points With Algebraic Coordinates Using Regular Chains

4 Implementation

5 Experiments

6 Conclusion

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 36 / 58



Modifications to IntersectionMultiplicity (1/2)

We have extended Maple’s IntersectionMultiplicity command
to a hybrid algorithm which first calls the generalization of Fulton’s
algorithm, and upon detecting failure, calls the algorithm of Vrbik et
al.

This implementation supports both, points passed as a list of rational
coordinates, and points encoded by a zero-dimensional regular chain.

Both the a generalization of Fulton’s algorithm and the algorithm of
Vrbik et al. can be accessed individually using the method keyword.

A special calling sequence was also included to optimize for the
special case of triangular regular sequences.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 37 / 58



Modifications to IntersectionMultiplicity (2/2)

Our implementation improves on the pivot selection process of
Algorithm 2, increasing the algorithm’s chance of success by trying all
polynomials with minimal modular degree as a pivot.

IntersectionMultiplicity also supports changes in the variable
ordering, manually, by modifying the parameters passed to the
command, or through the maxshift option, which applies a fixed
number of circular left shifts to the variable ordering.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 38 / 58



Modifications to TriangularizeWithMultiplicity

In order to compute a non-zero intersection multiplicity, one first
needs a solution to a given polynomial system. In practice one may
not always know the solutions of a polynomial system.

TriangularizeWithMultiplicity addresses this problem by first
solving the system using the Triangularize command of the
RegularChains library, and then, calls the
IntersectionMultiplicity command on each of the solutions
returned by Triangularize.

We hence, modify TriangularizeWithMultiplicity to support
the new version of the IntersectionMultiplicity command, and
include it in our experiments.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 39 / 58



TriangularizeWithMultiplicity Example

Figure: TriangularizeWithMultiplicity applied to the Ojika4 system.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 40 / 58



Ojika4

Figure: The Ojika4 system.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 41 / 58



Table of Contents

1 Introduction

2 Generalizing Fulton’s Algorithm

3 Encoding Points With Algebraic Coordinates Using Regular Chains

4 Implementation

5 Experiments

6 Conclusion

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 42 / 58



Legend I

n denotes the size of the square system, that is the number of
variables and number of polynomials in the system.

The point column represents the point encoded by the
zero-dimensional regular chain passed as input.

The ordering column denotes the variable ordering given to the
regular chain. This variable ordering is the same ordering used by the
generalization of Fulton’s algorithm in our implementation.

Columns under the heading Fulton denote results obtained from
calling the generalization of Fulton’s algorithm and columns under the
heading Vrbik denote results obtained from calling the algorithm of
Vrbik et al.

The Im column denotes the intersection multiplicity computed using
the given algorithm and CPU time denotes the CPU time elapsed
during the respective computation.

We use NR to denote no result.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 43 / 58



Experiments (1/6)

Table: IntersectionMultiplicity Using the Author’s Tests

System Specifications Fulton Vrbik

System n Ordering Point Im CPU Time Im CPU Time

test 1 3 x1 � . . . � x3 origin 2 15.00ms 2 329.00ms

test 2 5 x1 � . . . � x5 origin 2 31.00ms 2 2.95s

test 3 7 x1 � . . . � x7 origin 2 94.00ms 2 8.84s

test 4 9 x1 � . . . � x9 origin 2 188.00ms 2 20.69s

test 5 11 x1 � . . . � x11 origin 2 359.00ms 2 40.39s

test 6 13 x1 � . . . � x13 origin 2 610.00ms 2 71.58s

test 7 15 x1 � . . . � x15 origin 2 1.17s 2 118.52s

test 8 25 x1 � . . . � x25 origin 2 7.81s 2 17.32m

test 9 3 x � y � z origin 5 47.00ms NR NR

test 10 3 x � y � z origin 24 109.00ms ERROR 16.00ms

test 11 3 x � y � z origin 45 93.00ms ERROR 15.00ms

test 12 6 x1 � . . . � x6 origin 2 125.00ms 2 18.09s

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 44 / 58



Experiments (2/6)
Table: IntersectionMultiplicity Using Examples from the Literature

System Specifications Fulton Vrbik

System n Ordering Point Im CPU Time Im CPU Time

cbms1 3 x � y � z (0, 0, 0) FAIL 32.00ms ERROR 16.00ms

cbms2 3 x � y � z (0, 0, 0) FAIL 31.00ms ERROR 31.00ms

mth191 3 x � y � z (0, 1, 0) 4 31.00ms ERROR 1.47s

decker1 2 x � y (0, 0) 3 15.00ms 3 171.00ms

decker2 2 x � y (0, 0) 4 14.00ms 4 187.00ms

Ojika2 3 x � y � z (0, 0, 1) 2 63.00ms 2 1.53s

Ojika2 3 x � y � z (1, 0, 0) 2 62.00ms 2 1.48s

Ojika3 3 x � y � z (0, 0, 1) 4 31.00ms 4 1.62s

Ojika3 3 x � y � z (−5
2 ,

5
2 , 1) 2 31.00ms 2 1.02s

Ojika4 3 x � y � z (0, 0, 1) FAIL 16.00ms ERROR 657.00ms

Ojika4 3 x � y � z (0, 0, 10) FAIL 16.00ms 3 2.00s

Ojika4 3 x � z � y (0, 1, 0) 3 46.00ms ERROR 2.50s

Ojika4 3 x � z � y (0, 10, 0) 3 63.00ms 3 4.02s

Caprasse 4 x1 � . . . � x4 (2,−i
√

3, 2, i
√

3) FAIL 94.00ms NR >2000s

KSS 5 x1 � . . . � x5 (1, 1, 1, 1, 1) FAIL 43.00ms ERROR 56.94s

DZ1 4 x1 � . . . � x4 (0, 0, 0, 0) FAIL 31.00ms ERROR 16.00ms

DZ2 3 x � z � y (0, 0,−1) 16 78.00ms ERROR 16.00ms

Solotarev 4 x1 � . . . � x4 (53 ,−1, 5,−47
27) 2 110.00ms 2 1.36s

Solotarev 4 x1 � . . . � x4 (−1,−1, 5, 3) 2 93.00ms 2 1.36s

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 45 / 58



Legend II

Since TriangularizeWithMultiplicity may return many regular
chains, we define Success Ratio to be the ratio of intersection
multiplicities successfully computed to the number of regular chains
returned, using the generalization of Fulton’s algorithm and the
alforithm of Vrbik et al.

The implementation of the algorithm of Vrbik et al. throws an error is
thrown if it is unable to compute all intersection multiplicities, hence
the column Success Ratio will always contain a full fraction, an error,
or NR when this algorithm is used.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 46 / 58



Experiments (3/6)

Table: TriangularizeWithMultiplicity Using Examples from the Literature

System Specifications Fulton Vrbik

System n Ordering Success Ratio CPU Time Success Ratio CPU Time

cbms1 3 x � y � z 10/11 641.00ms ERROR 218.00ms

cbms2 3 x � y � z 1/2 11.55s ERROR 422.00ms

mth191 3 x � y � z 8/8 609.00ms ERROR 2.45s

decker1 2 x � y 3/3 47.00ms 3/3 140.00ms

decker2 2 x � y 3/3 63.00ms 3/3 250.00ms

Ojika2 3 x � y � z 4/4 219.00ms 4/4 5.38s

Ojika3 3 x � y � z 2/2 62.00ms 2/2 5.02s

Ojika4 3 x � y � z 3/5 438.00ms ERROR 906.00ms

Ojika4 3 x � z � y 5/5 500.00ms ERROR 3.41s

Caprasse 4 x1 � x2 � . . . 4/15 1.58s NR >2000s

Caprasse 4 x4 � x2 � x1 � x3 12/15 4.48s ERROR 14.09s

KSS 5 x1 � x2 � . . . 16/17 3.34s ERROR 71.16s

DZ1 4 x1 � x2 � . . . NR >2000s ERROR 313.00ms

DZ2 3 x � z � y 2/2 172.00ms ERROR 47.00ms

Solotarev 4 x1 � x2 � . . . 4/4 453.00ms 4/4 3.47s

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 47 / 58



Experiments (4/6)

Table: TriangularizeWithMultiplicity Using Examples from the Literature with Multiplicity 1

System Specifications Fulton

System n Success Ratio CPU Time

eco5 5 4/4 609.00ms

eco6 6 5/5 2.52s

eco7 7 6/6 97.17s

trinks 6 2/2 516.00ms

Czapor Geddes 1 3 1/1 281.00ms

A Bifurcation Problem 3 3/3 2.95m

quadfor2 4 1/1 109.00ms

Lorentz 4 6/6 485.00ms

S9 1 8 2/2 1.80s

cyclic3 3 2/2 110.00ms

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 48 / 58



Legend III

Columns under the heading iMult denote results obtained from
calling the iMult command and columns under the heading
IntersectionMultiplicity denote results obtained from calling
the generalization of Fulton’s algorithm.

The ordering column denotes the variable ordering given to either the
generalization of Fulton’s algorithm in the case of
IntersectionMultiplicity, or the variable ordering given to the
polynomial ring in the case of iMult.

The Im column denotes the intersection multiplicity computed using
the given algorithm and CPU time denotes the CPU time elapsed
during the respective computation.

For tests run using either Maple or Singular, if we experience a
timeout or error, we populate all larger systems in the same family of
experiments with that result. That is, all cells in the given column
with the same parameter d and larger n, will be automatically
populated with the notation for either a timeout or error, respectively.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 49 / 58



Experiments (5/6)
Table: iMult and IntersectionMultiplicity on nql-n-d

iMult IntersectionMultiplicity

Order x1 � . . . � xn x1 ≺ . . . ≺ xn x1 � . . . � xn x1 ≺ . . . ≺ xn

System Im CPU Time Im CPU Time Im CPU Time Im CPU Time

nql-3-4 16 <1.00ms 16 <1.00ms 16 109.00ms 16 16.00ms

nql-4-4 32 <1.00ms 32 <1.00ms 32 625.00ms 32 16.00ms

nql-5-4 64 48.16s 64 20.00ms 64 4.55s 64 47.00ms

nql-6-4 NR >2000s 128 50.00ms 128 37.75s 128 63.00ms

nql-7-4 NR >2000s 256 310.00ms 256 5.51m 256 109.00ms

nql-8-4 NR >2000s 512 3.2s NR >2000s 512 203.00ms

nql-9-4 NR >2000s 1024 79.5s NR >2000s 1024 422.00ms

nql-10-4 NR >2000s NR ERROR NR >2000s 2048 828.00ms

nql-3-6 54 <1.00ms 54 <1.00ms 54 469.00ms 54 31.00ms

nql-4-6 162 19.21s 162 3.71m 162 5.38s 162 62.00ms

nql-5-6 NR >2000s NR >2000s 486 86.11s 486 125.00ms

nql-6-6 NR >2000s NR >2000s NR >2000s 1458 313.00ms

nql-7-6 NR >2000s NR >2000s NR >2000s 4374 1.66s

nql-8-6 NR >2000s NR >2000s NR >2000s 13122 3.11s

nql-9-6 NR >2000s NR >2000s NR >2000s 39366 9.11s

nql-10-6 NR >2000s NR >2000s NR >2000s 118098 27.86s

nql-3-8 128 30.00ms 128 70.00ms 128 1.09s 128 31.00ms

nql-4-8 NR >2000s NR >2000s 512 33.28s 512 78.00ms

nql-5-8 NR > 2000s NR >2000s NR >2000s 2048 281.00ms

nql-6-8 NR > 2000s NR >2000s NR >2000s 8192 1.11s

nql-7-8 NR >2000s NR >2000s NR >2000s 32768 4.33s

nql-8-8 NR >2000s NR >2000s NR >2000s 131072 20.39s

nql-9-8 NR > 2000s NR >2000s NR >2000s 524288 92.62s

nql-10-8 NR > 2000s NR >2000s NR >2000s 2097152 5.87m

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 50 / 58



Experiments (6/6)

Table: iMult and IntersectionMultiplicity on simple-nql-n-d

iMult IntersectionMultiplicity

Order x1 � . . . � xn x1 ≺ . . . ≺ xn x1 � . . . � xn x1 ≺ . . . ≺ xn

System Im CPU Time Im CPU Time Im CPU Time Im CPU Time

simple-nql-4-4 256 <1.00ms 256 <1.00ms 256 547.00ms 256 63.00ms

simple-nql-5-4 1024 <1.00ms 1024 <1.00ms 1024 3.09s 1024 250.00ms

simple-nql-6-4 4096 10.00ms 4096 10.00ms 4096 16.62s 4096 437.00ms

simple-nql-7-4 16384 250.00ms 16384 200.ms 16384 79.55s 16384 2.05s

simple-nql-8-4 NR >2000s NR >2000s NR ERROR 65536 7.50s

simple-nql-4-8 4096 <1.00ms 4096 <1.00ms 4096 8.16s 4096 219.00ms

simple-nql-5-8 32768 180ms 32768 160.00ms 32768 93.30s 32768 1.56s

simple-nql-6-8 262144 13.78s 262144 13.65s NR ERROR 262144 12.69s

simple-nql-7-8 NR >2000s NR >2000s NR ERROR 12097152 99.95s

simple-nql-8-8 NR >2000s NR >2000s NR ERROR 16777216 12.18m

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 51 / 58



Polynomial Systems

See [3, 4, 2, 9] for descriptions of the polynomial systems studied.

Some systems were modified from their original presentation, such
modifications are described further in the corresponding manuscript.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 52 / 58



Table of Contents

1 Introduction

2 Generalizing Fulton’s Algorithm

3 Encoding Points With Algebraic Coordinates Using Regular Chains

4 Implementation

5 Experiments

6 Conclusion

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 53 / 58



Conclusion

The generalization of Fulton’s algorithm provides a viable alternative
to intersection multiplicity algorithms which rely on standard bases.

Experimentally, the generalization of Fulton’s algorithm outperforms
intersection multiplicity algorithms which use standard bases on large
polynomial systems as well as other standard basis-free intersection
multiplicity algorithms.

By allowing points encoded by zero-dimensional regular chains as
input, our modified version of the IntersectionMultiplicity

command can compute the intersection multiplicity at any point,
rational or not.

The simplicity of the generalization of Fulton’s algorithm (at a point)
makes it easily implementable in almost any computer algebra system.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 54 / 58



References I

Parisa Alvandi, Marc Moreno Maza, Éric Schost, and Paul Vrbik.
A standard basis free algorithm for computing the tangent cones of a
space curve.
In Vladimir P. Gerdt, Wolfram Koepf, Werner M. Seiler, and
Evgenii V. Vorozhtsov, editors, Computer Algebra in Scientific
Computing, pages 45–60, Cham, 2015. Springer International
Publishing.

Dario A. Bini and Bernard Mourrain.
Polynomial test suite.
http://www-sop.inria.fr/saga/POL/.
Accessed: 2022.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 55 / 58

http://www-sop.inria.fr/saga/POL/


References II

François Boulier, Changbo Chen, François Lemaire, and Marc Moreno
Maza.
Real root isolation of regular chains.
In Ruyong Feng, Wen-shin Lee, and Yosuke Sato, editors, Computer
Mathematics, 9th Asian Symposium (ASCM 2009), Fukuoka, Japan,
December 2009, 10th Asian Symposium (ASCM 2012), Beijing,
China, October 2012, Contributed Papers and Invited Talks, pages
33–48. Springer, 2009.

Barry H. Dayton and Zhonggang Zeng.
Computing the multiplicity structure in solving polynomial systems.
In Manuel Kauers, editor, Symbolic and Algebraic Computation,
International Symposium ISSAC 2005, Beijing, China, July 24-27,
2005, Proceedings, pages 116–123. ACM, 2005.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 56 / 58



References III

William Fulton.
Algebraic curves - an introduction to algebraic geometry (reprint vrom
1969).
Advanced book classics. Addison-Wesley, 1989.

Gert-Martin Greuel, Santiago Laplagne, and Gerhard Pfister.
Singular manual, imult.
https:

//www.singular.uni-kl.de/Manual/4-0-3/sing_1277.htm.
Accessed: 2022.

Gert-Martin Greuel and Gerhard Pfister.
A Singular introduction to commutative algebra.
Springer Science & Business Media, 2012.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 57 / 58

https://www.singular.uni-kl.de/Manual/4-0-3/sing_1277.htm
https://www.singular.uni-kl.de/Manual/4-0-3/sing_1277.htm


References IV

Steffen Marcus, Marc Moreno Maza, and Paul Vrbik.
On fulton’s algorithm for computing intersection multiplicities.
In Vladimir P. Gerdt, Wolfram Koepf, Ernst W. Mayr, and Evgenii V.
Vorozhtsov, editors, Computer Algebra in Scientific Computing - 14th
International Workshop, CASC 2012, Maribor, Slovenia, September
3-6, 2012. Proceedings, volume 7442 of Lecture Notes in Computer
Science, pages 198–211. Springer, 2012.

Jan Verschelde.
Phcpack demonstration database.
http://homepages.math.uic.edu/~jan/demo.html.
Accessed: 2022.

Paul Vrbik.
Computing Intersection Multiplicity via Triangular Decomposition.
PhD thesis, The University of Western Ontario, 2014.

Ryan Sandford Generalizing Fulton’s Algorithm April 25, 2022 58 / 58

http://homepages.math.uic.edu/~jan/demo.html

	Introduction
	Generalizing Fulton's Algorithm
	Encoding Points With Algebraic Coordinates Using Regular Chains
	Implementation
	Experiments
	Conclusion
	References

